سنتر و بررسی خواص خود تمیزشوندگی
نانوکامپوزیت به روش سل-زل CoTiO$_3$/TiO$_2$

ساماری استفنداری 1، علی نعمتی 2، مرجان گارگر راشد 3

1) دانشکده مولد و مالورزی، دانشگاه آزاد اسلامی واحد واحد ارومیه و تحقیقات دانشکده مهندسی و علم مداد، دانشگاه صنعتی شریف
2) دانشکده سیمی، دانشگاه آزاد اسلامی تهران شمال

کلمات کلیدی: تیتانیوم الکترلیک، CoTiO$_3$/TiO$_2$، خود تمیزشوندگی

1- مقدمه

در عصر جدید کامپوزیت‌ها در پی بود که کامل‌ترین روش تحقیقی برای ایفا می‌کند. استفاده از مواد کامپوزیتی به شدت به افزایش است. این که بت‌‌نجیسی بهعسیت کاربرد این ترکیبات بی‌پردازه و بهبود خواص مجازی که با داده‌بودن خواص بی‌پردازه یکی از روش‌های ترکیبی سنتز گردید. تحقیقات گسترده‌ای راه‌نما برای طراحی، ترکیب و تصفیه‌ی کامپوزیت‌های این خط و نیروی الکتریکی بهم‌کاری می‌تواند در کاربردهای مختلفی از جمله انرژی برق و نیروی الکتریکی حسینی شود.

Samyar1982@yahoo.com
نمونه

<table>
<thead>
<tr>
<th>TiO₂</th>
<th>CoTiO₃</th>
<th>رنگ بلیت</th>
<th>فاصله تاشکل شده بعد از سنتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-9</td>
<td>90</td>
<td>بنفش</td>
<td>10</td>
</tr>
<tr>
<td>CT-5</td>
<td>50</td>
<td>بنفش</td>
<td>50</td>
</tr>
</tbody>
</table>

۳- نتایج و بحث

شکل ۱.‌گلکوسیتر پرتو اشعه X برای دو نمونه تانکواموروزیت ۹-۰ و ۵-۰ را در دماهای ۱۰۰۰ درجه ی واگرایه می‌دهد. بررسی این پیک‌ها نشان می‌دهد که سیستم‌های تاشکل شده شامل دو اصلی اصلی‌ترین اثر روتابت و فاصله تاشکل شده است که به ترتیب تاشکل شده قهوه‌ای و قهوه‌ای قهوه‌ای است.

پیک‌های فاصله تاشکل شده برای CoTiO₃ مشخص شده و همچنین بار اوله نمونه‌ها به‌کمک تاکسید دی‌سی‌سی‌دی و چهار فیلیپس سپت تاشکل شده و تابش به فاز فلسطینی در حال حاضر.

استاندارد (77-1373) و (A) به چاپ نمونه‌ها برای نمونه‌ها به‌کار می‌رود. فاز تاشکلی تارایه اکسیدتیترین در درجه دما بالای روتابت بود. فاز تاشکلی تارایه اکسیدتیترین در درجه دما بالای روتابت بود.
دما. فاز روتایل تشکیل شد. اندوزه بلورک نانوکامپوزیت با استفاده از معادله شری (\(D = K \alpha (\beta \cos \varphi) \)) به‌روزرسانی شد و دامنه بین \(\beta \) و \(0\) به‌روزرسانی شد. اندوزه کارایی شد که این مقدار در حدود 100 nm بود. بر اساس کار دیگران در

دماهای کمتر از 200°C، 60 تینتات کیلیت تشکیل نشده و بصورت TiO\textsubscript{2} و Co\textsubscript{3}O\textsubscript{4} متابول می‌شوند (V–V).

![شکل 1: تصویر میکروسکوب الکترونی برای CT-5 نمونه 9 (ب) نمونه 9 (ت) نمونه 5 CT-5 بعد از کلینیسیون در دماهای 600°C طی 4 ساعت نشان می‌دهد.](image1.png)

![شکل 2: تصویر میکروسکوب الکترونی برای CT-5 نمونه 9 (ب) نمونه 9 (ت) نمونه 5 CT-5 بعد از کلینیسیون در دماهای 600°C طی 4 ساعت در بزرگنمایی 5000 بردار.](image2.png)
شکل ۳- نتایج حاصل از آزمون فتوکاتالیستی مربوط به تجزیه میلئین بلو در اثر تابش برای نمونه‌های ۵ و ۹

با توجه به جدول ۲، زمانی برای تابش فیبر فیبر فیبر در اثر دو نمونه مشخص کرده است.

جدول ۲- زمانی برای تابش UV برای نمونه‌های ۹ و ۵

<table>
<thead>
<tr>
<th>زمان</th>
<th>MB</th>
<th>کد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۰ دقیقه تحت تابش</td>
<td>MB 0</td>
<td></td>
</tr>
<tr>
<td>۴۰ دقیقه تحت تابش</td>
<td>MB 1</td>
<td></td>
</tr>
<tr>
<td>۳۰ دقیقه تحت تابش</td>
<td>MB 2</td>
<td></td>
</tr>
<tr>
<td>۲۵ دقیقه تحت تابش</td>
<td>MB 3</td>
<td></td>
</tr>
<tr>
<td>۲۰ دقیقه تحت تابش</td>
<td>MB 4</td>
<td></td>
</tr>
</tbody>
</table>

نمونه‌ها بعد از آنکه به‌مدت ۲۴ ساعت در اتاق تابش گرفتند در بازه‌های مشخص شده (جدول ۲) تحت تابش فیبر فیبر فیبر در اثر دو نمونه مشخص کرده است.

[۹] این امر بیشتر به بودن تیتانات کالکس در ترکیب است که نشان می‌دهد تیتانات کالکس برای خاصیت فتوکاتالیستی خوبی است. کامپوزیت شدن دی‌کسیدینی و تیتانات کالکس با یکدیگر سبب تقویت این شده است.
شكل ۴ و ۵ پیتریپیت زاویه ترشانه‌گی برابر نمونه ۵ و CT-9 را نشان می‌دهد. شیمی سطح مواد آبیست اجازه تشکیل یک لایه آب بر روی سطح آنها را می‌دهد. علاوه بر این، مواد آبیست کش سطحی بالایی دارند و این توانایی را دارند که با آب پیوند هیدروئی تشکیل دهند. برای بررسی پارامترهای آبیست با آبکریز بودن سطح یک لایه، با اضافه‌کردن زاویه تاسیس را انداره گیری کرد. در حالی که برای قطعیت که روز سطح جامد قرار دارد زاویه‌تاسیس بهبود با انداره زاویه بین سطح پلاستیک و نقطه تماس با سطح است. فاصله کار بند صورت بود که ابتدا نمونه‌ها به مدت ۴۴ ساعت در اتاق تریک قرار داده شد، سپس نمونه‌ها ببین دستگاه اندازه‌گیری داده شدند و قطره بر روی سطح انداده‌شده و زاویه قطعه سطح توسط دستگاه اندازه‌گیری شد. بعد از آن به مدت ۶۰ دقیقه تحت تاثیر نور فرابنفش قرار گرفت و همین‌طور فاراوند مجددا تکرار شد.

![Shape 4](a) [Shape 4](b)

شکل ۴ - زاویه ترشانه‌گی برابر نمونه ۵ در مدت زمان (a) صفر دقیقه بعد از اتصال تریک (b) ۶۰ دقیقه تا بانش

شکل ۵- زاویه ترشانه‌گی برابر نمونه ۹ در مدت زمان (a) صفر دقیقه بعد از اتصال تریک (b) ۶۰ دقیقه تا بانش

![Shape 5](a) [Shape 5](b)

۴- نتایج گیری

نتایج پیش‌بینی بیش ماده‌ای تنابنی در پتروپویکسایت (TTIP) و استات کابل با مویقتی به‌روش سل-زد-زل کلولیم که از این دما در دماهای دمای ۳۰۰-۵۰۰ سرعت ۴ ساعت است بطور کامل تشکیل شدند و ریسک‌های نمونه‌ها کاملا همگن و انداره ذرات در ابعاد ۲۵-۵۰ می‌باشد. زاویه
ترشوندگی نمونه-5 در مقایسه با نمونه-9 در مدت زمان تابش نور UV تغییر بیشتری داشت که دلیل آن می‌تواند مقاوم‌سازی بیشتر دی‌اکسیدتیتانیم در ترکیب باشد. با این حال می‌توان یبان کرد که تيتانات کم‌دوز می‌تواند ماندگی دی‌اکسیدتیتانیم نسبت به تابش نور UV عکس عمل نشان دهد. همچنین در اثر تابش UV نمونه باعث تجزیه محلول می‌شود بلو شدن که باعث خاصیت فتوکاتالیستی نمونه‌ها بود. از نتایج بدست‌آمده می‌توان نتیجه گرفت که دو نمونه نانوکامپوزیت از خود رفتار خوب ترشوندگی دارند.

پژوهش‌ها

بررسی اثر نانو ذرات اکسید سریم بر چسبندگی لعاب به زیر لایه فلزی

بتا اسماعیلزاده، مجید جعفری، مجتبی نصرافشانی

دانشگاه مهندسی مواد دانشگاه آزاد اسلامی واحد نجف‌آباد

چکیده: در این پژوهش، اثر نانو ذرات اکسید سریم بر چسبندگی لعاب به زیر لایه فلزی مورد بررسی قرار گرفت. اکسید سریم یک بیش ماده آستانه مسئول سبب ایجاد منافع ایجاد شده در زمان سنگین شد. پس از بررسی، نتایج نشان داد که استفاده از اکسید سریم به عنوان یک آسان سبب بهبود لعاب به وسیله اتصال از این اکسید به شناوی لعاب می‌باشد. در نتیجه، خلوتی و فریب‌های موجود آمد در فلز، یک اتصال مکاتیکی را باعث می‌شود. [1]

نظریه مکاتیکی: بر اساس این نظریه، علت چسبندگی زیر لایه فلزی به لعاب، عمل باعث ایجاد هتکام ممکن است. در واقع تهیه‌نوازی ایجاد شده بر سطح فلز به وسیله عمل ایجاد هتکام اسید شده است. در این بررسی، اکسید سریم به عنوان یک بیش ماده آستانه، تاثیر مثبتی داشته است. نتایج نشان داد که استفاده از اکسید سریم به عنوان یک آسان سبب بهبود لعاب به وسیله اتصال از این اکسید به شناوی لعاب می‌باشد. در نتیجه، خلوتی و فریب‌های موجود آمد در فلز، یک اتصال مکاتیکی را باعث می‌شود.

1 - مقدمه

چسبندگی لابه‌های فلزی (میان‌ها) یکی از مهم‌ترین خصوصیات تعمیمی کننده کیفیت نهایی این پوشش‌ها است. پوشش‌های زیادی در زمینه بررسی ساختار مورد بهبود چسبندگی انجام شده و نظیره‌های مختلف درباره چسبندگی لعاب به فلز بیان شده است.

نظریه الکترونتیکی: در طول فراوان پوشش داده به دلیل وجود الکترونتیک و همچنین اکسید فلزات نسبی در از اهم مانند توک و کیسه در زمینه فلزی پیله‌ها یک چکاوکی پیوسته نشکشی که باعث شده به شکل فلزی خواهد شد. در نتیجه، خلوتی و فریب‌های موجود آمد در فلز.

نظریه لایه ای اکسید: تشکیل یک سیلیکات از این واقعیت کره (میان‌ها و لعاب) در ایجاد پوشستی شیمیایی موجود در نواحی مرز بین فلز و پوشش، اتصال شیمیایی را در می‌آید. یک این تریب که اکسید یک توسیع هیدروژن به نتایج ایجاد آن‌ها و فلز، ایجاد اتصال بین لعاب و فلز را ایجاد می‌کند. [1]