بررسی اثر نانوذرات اکسید سریم بر چسیندگی لعاب به زیر لایه فلزی

بنیا اسماعیلزاده، مجید جعفری، مجتبی نصرافشانی

دانشگاه مهندسی مواد دانشگاه آزاد اسلامی واحد نجف‌آباد

چکیده: در این پژوهش اثر نانوذرات‌های اکسید سریم بر چسیندگی لعاب به شکل فلزی پژوهش‌هایی که با پیوسته‌های مختلف بر روی سطوح آلومینیوم سریم نتیجه‌گیری کرده‌اند. سریم به دو گروه اصلی تقسیم می‌شود: گروه سیلنتس و گروه سریم به نوعی بافت ممکن است در فصل نشان داده که افتخاراتی از اکسید سریم به عنوان نانوذرات اسپاینی به اکسید چسیندگی در بهترین وضعیت این‌پوشش باشد.

 المشترک لیست: FESEM و XRD

 1 - مقدمه

چسیندگی لعاب‌های فلزی (مینیاها) یکی از مهم‌ترین خصوصیات تهیه کننده کفیت نهایی این یویش‌ها است. پژوهش‌های زیادی در زمینه بررسی ساختار و روش بهبود چسیندگی انجام شده و نظیره‌های مختلف درباره چسیندگی لعاب به فلز بین شده است.

نظره الکترونیت: در طول فراورده یویش‌ها در حال وجود الکترونیت و همچنین اکسید زنجیره‌های آهن مانند تیکل و کیسه‌ها در زمان فلز در پیش‌ها گالوانیک موضعی تشکیل می‌شود که باعث کاهش چسیندگی بهایی خواهد شد. در نتیجه، خلخ و فرخی‌های به‌وجود آمد در این باید به درک فلزی و شکل فلزی خواهد داشت.

فلز، یک اتصال مکانیکی را داشته و نظره‌ای اکسید: تشکیل یک فاز سیلیکاتی از آهن و اکسید کره (یک فلز و لابد) و ایجاد پیوندگی شیمیایی موضعی در نواحی مرز فلز با ای، اتصال شیمیایی موضعی می‌آید.

نظره احیای هیدروژن: بر اساس این نظره‌ها، یک کیت توسط یک کیت توسط ترکیب به یک کیت حاوی، ایجاد اتصال بین فلز و فلز

را امکان پذیر می‌سازد.

نظره مکانیکی: بر اساس این نظره، علت چسیندگی، زیر خشنی شدن سطح فلز به لاستیک و عملی به است قلم‌های اسید

شیمیایی است. در واقع ناحیه‌ای ایجاد شده بر سطح فلز هیبرید موضعی بستگی به یک کیت حاوی، ایجاد اتصال بین فلز و فلز

نظره دندانی: دندان‌ها، بلورها یا هسته‌های مکانیکی که ممکن است در فلزات در بینش‌های ماخته‌ای و یا بازی‌های غیر فلزی به فلزات در آن ها شکسته می‌شوند. از اکسید کیت توسط ترکیب به یک کیت حاوی، ایجاد اتصال بین فلز و فلز

شکل از سطح فلز با یک ماتریکس غیر فلزی و یک کیت حاوی، ایجاد اتصال بین فلز و فلز

Bita.esmaeelzade@yahoo.com
نظریه جذب اتمی: بر اساس نظریه هر لایه که شامل مقدار زیادی از اکسید یک فلز با پایین ترین
ظرفیت خود باشد به سطح فلز خواهه چسبید (1).

جهت پیشگیری اکسیدهای سنگین مانند CoO و NiO و آلیاژ تشکیل می‌دهند و سبب افزایش نفوذ لاکهای فلز در سطح فولاد می‌شوند. اکسیداتور باعث ایجاد
تخلخل‌هایی باشد در فلز و نفوذ شیمیایی را از FeO به داخل این تخلخل‌ها نشود و چسبندگی خوبی را
ایجاد می‌کند. از طرفی آهن بنته در فصل مشترک اکسید می‌شود و هنگامی که شیشه ذوب می‌شود به این
فلز اکسیدی حمله می‌کند و این را به خود می‌کند. در اثر حضور اکسیدهای شیشه سنگی مانند SiO2
و SiO32- این عادات افزایش می‌یابد و یک سیلیکاتی از آهن، بین پوشش و فلز تشکیل می‌شود و اتصال
کسب می‌کند.

چسبندگی لایه‌های متفاوت با آزتوسیس مختلف بهبود بخشید. جذبیت و همکارانش اثر را به
چسبندگی لایه با سطح کمتر نهاده و تند آن کمک کرده‌اند که واکنش این Fe موجود در سطح فلز و نانولایه‌ای در لایه، فلز
اکسیداتور باعث افزایش استحکام و چسبندگی در فصل مشترک لایه-فلز خواهه شده (2).

Fe3O4 لیگن و همکارش اثر را به سطح و افزایش دقت‌های رضایت به وسیله چسبندگی
بیشتری که در برابر چسبندگی لایه
بررسی شده و چسبندگی با نظریه الکترونیکی توجه شد (5).

در این پژوهش از اکسید سرم استفاده شد و اثر اکسید بر چسبندگی لایه عامل بی‌توجهی سطح
کستن نانو ذرات اکسید سرم و افزودن آن به لایه به دو روش زیر مورد بررسی قرار گرفت:
- بررسی نانو ذرات اکسید سرم در صفحه مشترک لایه-
- بررسی اثر نانو ذرات اکسید سرم موجود در خود لایه.

3- فعالیت‌های تجربی

2- آماده‌سازی نمونه لایه‌دار اکسید سرم

2-1- سنتز نانو اکسید سرم

اکسید سریم، به روش سل-ژل سنتز شده به‌طوری که ۶۰۰ (مول ۱۰ غرم) آمونیوم سریم نیترات
(Ce(NH₄)₂(NO₃)₆)۲۷/۱۷ (ماهی‌لیتر اتانول) و ۳۲۰ (ماهی‌لیتر) اسید سبکو و ۱/۴۰ (ماهی‌لیتر)
(3 میلی لیتر) آب دویزه با هم مخلوط شده (به هم مواد استفاده شده محصول شرکت مرکز آلمن بودن) به
و سپس از ۳ ساعت، سل حاصل از روی مخزن مطقسی برداشته و به مدت ۲۴ ساعت در دمای ۶۵۰ درجه سانتی‌گراد
خشک شده و سپس در دمای ۴۰۰ درجه سانتی‌گراد به مدت ۱ ساعت کلسینی شد.

2-2- مشخصه‌های پودر سنتز شده

أنالیز حرارتی افتراکی (DTA) METTLER TGA/SDTA 851E انجام شد. شناسایی فازها توسط روش آنالیز پرتو ایکس
XPERTHighScore، محصول Philips (Cu Ka)
درجه انتخاب شد. ریزسانان بر روی گلد سیس افتراکی در دمای مدل
Siemens SEM TeScan Vega2

2-3- آماده‌سازی فولاد

در این پژوهش از ورق فولادی ST12 تولید شدکه فولاد مبارک به عنوان زیرلایه فلزی استفاده شد، که با

چربی زدایی، اسید سویی در محلول اسید سولفوریک 70 درصد، خشک سازی در محلول رقیق کربنات سدیم و پوراکس و خشک کردن، آماده‌سازی شد.

2-1-4. آماده‌سازی و اعمال لعاب

لعلاب مورد استفاده در این پژوهش، پودر لعلاب جنی در ساخت شرکت کمپین کیمیا ترکیب است که یک فریت بروپانیلیک ته و که کس از آسپار کاری از کل 35 میکروتریو غیر دارا شد. این نوع لعلاب طبق کانالوگ و ترکیبات قلیایی دیگر است (درصد وزنی اکسیدها SiO₂، B₂O₃، BaO، NiO، CoO توسط سایزی الام ته و بعید وجود اثر یکی از اتمان آلایز به XRF) دوگاه لعلاب به مخلوط کردن پودر لعلاب با 1 درصد وزنی نانوذرات اکسید سریم بدن هیچگونه افزودنی دیگری، با 30 درصد وزنی آب آماده شد. سپس به‌وسیله یا پیش فازی استفاده از افعال عملاً نمونه ها پس از خشک شدن در دمای 800 گرم در دقیقه در کوره الکتریکی در دمای 800 به آفیزیش دمای 100 در به زمان ماند 5 دقیقه یک دندان.

2-2. آماده‌سازی نمونه با پویش سریم در فصل مشترک لعاب – فلز

آمونیم سرمی نیترات، آتانول، اسید نیتریک و آب دیویژن با نسبتهای مولی 0.2/140 میلی مول، با هم مخلوط شد. در برای ایجاد سیل همگن، به مدت 3 ساعت بر روی هم مخلوط می‌شود و سپس از آماده سازی ورق فلزی، برونش پویش دهی خشکی 1، بر روی ورق ها پوشش داده شد. نمونه‌های پویش داده شده هم به منظور زل شدن لل بر روی ورق و هم تخریب خالی، به مدت 3 دقیقه در خشک کن در دمای 400 گرم داده شدند. سپس لعلاب به روش پاشی اعمال شد و به مدت 5 دقیقه در دمای 1100 گرم خشک شده و به مدت 5 دقیقه در دمای 800 به سرعت افزایش دمای 100 در دقیقه شدند.

2-2-2. بررسی فیزیک‌گرایی لعاب

بررسی فیزیک‌گرایی لعاب به زیر نیست. یک تفاوت از آزمون ضریب سطح و نمای انجام گرفت. بر اثر ضریب وزن لعلاب تنش قرار می‌گیرد. پایداری لعاب از طریق مقایسه مقدار لعلاب با قیمت‌یابی بر روی سطح با استاندارد ASTM B916 مشخص شد.

3- نتایج و بحث

3-1-1. بررسی پودر سنتز شده

به منظور آگاهی از ما و روند تشکیل اکسید سریم و فازهای احتمالی که در هنگام عملیات حرارتی تشکیل می‌شود، زل خشک شده در دمای 900 به مدت 24 ساعت تحت آنالیز حرارتی انرژی و DTA TG و گرفت، شکل 1. آنالیز حرارتی انرژی لعلاب در دمای 300 گرم، این کاهش احتمالاً مربوط به خروج محلول و اب باقی‌مانده در نمونه است. یکی غرماگر ظاهر شده در دمای 1000 در مختلی تغییرات غرماگر، تا پایین که کاهش وزن دیده شد در مختلی 1700 گرم. در مختلی 1700 گرم، یک گرم ظاهر شده که احتمالاً مربوط به خروج آب بلوچ است [1]. وجود یک گرم گرامدراین در مختلی 1700 گرم، نشان دهنده تجزیه آمونیم سرمی نیترات و تشکیل اکسید سریم است.
کاهش وزن شدید (حدود ۷۰ درصد) دیده شده در منحنی TG، احتمالاً به سبب خروج گازها و محصولات تانی از این واکنش‌های تست. با کامل شدن خروج این گازها و تکمیل واکنش‌های مربوط به آن، دیده می‌شود که در دمایی تزریقی به °C ۲۰۰ کاهش وزن نمونه متوقف شده و نمونه به پایداری و وزنی می‌رسد. از اینجا که در دمایی بالاتر از °C ۳۰۰ هیچ کاهش وزنی دیده نمی‌شود، محدوده دمایی ۲۰۰ تا °C ۶۰۰ درجه سانتی‌گراد، دمای بلوری شنید اکسید سرمی است (۱۰۰)، دمایی دمایی °C ۴۰ به‌عنوان دمای پرگاس‌سنجی دیگر شد.

شکل ۲ نمودار پراش پتروسیک را برای نمونه پودری کلسیمی شده در دمای °C ۳۰۰ نشان می‌دهد. نمودار حاکی از تشکیل اکسید سرمی با فاز سربانیت (CeO۲) است که دارای شیب و سطح برugarانه تانی بر طور مثبت درجهای (FCC) است که در جهت های (۱۱۱)، (۱۰۰) و (220) نمای می‌گیرد (۱۱۱). با استفاده از معادله شرر اصلاح شده که در زیر آورده شده است، می‌توان با رسم برای پرینت مقایسه بین B یا 2|S|و نسبت ¯ν و به‌دست آمده خطا با شیب تجویزی تزریقی به می‌رسد و نتایج از عرض از میدا خط به‌دست آمده که برای این نتایج با داشتن a=8/۱۰ = ۲.۸ انگستروم، D. این اندازه بلوری‌ها به‌دست آورده [121] با استفاده از داده‌های الکور GIS و رابطش شرر اصلاح شده، دیده می‌شود که اندام بلوری‌ها اکسید سرمی در °C ۴۰۰ ناتوانی است.
شکل ۲- منحنی XRD نمونه پویش اکسید کلسیم در دمای ۴۰۰°C.

شکل ۲- بررسی مورفولوژی کلسیم اکسید سرمی از مسیر SEM و FESEM

شکل ۳- تصاویر XRD اکسید کلسیم کلسیمی شده در دمای ۴۰۰°C.

شکل ۳- بررسی پویش ایجاد شده (پویش اکسید سرمی به تنها و بدون لعاب)

شکل ۴- آنالیز فازی
در این دما، آکسید سرمی بر سطح فولاد تشکیل یافته است. مطالعه شکل لا ئی ایجاد شده ظاهری شیبه
گل خشک شده داراد (۱۶ و ۱۷) همانطور که دیده می‌شود، لا ای سرمی درای شیبک گسترش‌های از
ترک‌های هک که مشخصه بوش‌های سرامیکی با ذرات بسیار کوچک بر زیرلایه فلزی است. این جفت بوجود
آمدن یک‌ها، تفاوت‌های فیزیکی و ناسازگاری بوش‌های سرامیکی با زیرلایه در تغییرات فیزیکی و شیمیایی
هنجام خشک شدن و حرات دهی (دی‌هیدرات‌شدن، تبدیل فاز و تغیرات حجم) است (۶). در مورد
بوش‌های سرامیک نیز این مورفولوژی در مراجع مختلف گزارش شده (۱۵ و ۱۶) با توجه به ابعاد نانوتومی
آکسید سرمی و کاهش وزن ۷۰ درصدی دیده شده در نمودار، وقوع این ترک‌ها ممکن است با فرآیند کلی از
منطوق بررسی دقیق‌تر اندازه ذرات بوش‌های ایجاد شده از میکروسکوپ الکترونی روشی با قابلیت گسیل
میدانی استفاده شد. در شکل ۶[ال] تصاویر بوش‌های آکسید سرمی که در دما ۴۰۰°C عملا تراتی شده، شما
اکسید سرمی در دما ۴۰۰°C عملا تراتی شده، شما اکسید سرمی یا بوش‌های ایجاد شده بین ۳۰ تا ۴۰
نانومتر است.

شکل ۶- تصویر FESEM یا پوشت اکسید سرمی عملا تراتی شده در الف (۴۰۰°C) ب (۷۰°C)

۹۳- بررسی چسبندگی لعاب
تصویر سطح اثر ضریب نموده شد در شکل ۷ از آره شده است. شکل ۷[ال] تصویر سطح اثر ضریب
نمونه لعاب بودن آکسید سرمی را نشان می‌دهد. مطالعه شکل نمونه در کلاس چسبندگی ۳ به
چسبندگی خوب می‌گزارد. چون تقریباً ۴۰-۵۰ درصد از لعاب در سطح ضریب این و
ضریب نمونه لعاب دارای اکسید سرمی است. در اثر ضریب مناسب ۲۳ درصد لعاب در اثر ضریب نمونه لعاب و
برای آن کلاس چسبندگی ۳ به چسبندگی متوسط تعیین می‌شود. شکل ۷[آ] تصویر سطح اثر ضریب
نمونه لعاب با لاگی میانی آکسید سرمی است. مطالعه شکل حدود ۷۰ تا ۸۰ درصد لعاب در اثر ضریب بر سطح
فلز باقی مانده که می‌توان برای آن کلاس چسبندگی ۳ به چسبندگی خیلی خوب تعیین کرد.

Dry-mud
در شکل ۷ تصاویر سطح اثر ضریب الاف) نمونه لعاب بدون اکسید سرمین (ب) نمونه لعاب با اکسید سرمین (ج) نمونه لعاب با پوشش اکسید سرمین در فصل مشترک.

چسبندگی بین لعاب و فلز است. در طی پخت، آهن بدن در فصل مشترک اکسید می‌شود و هنگامی که شیشه ذوب می‌شود به این ترتیب اکسیدی حمله می‌کند و او در خود خل می‌کند. اثر حضور اکسیدهای شیشه‌سازی مانند SiO₂ و Fe₂O₃ بروز عادی اخراج سیلیکاتی از آهن، بین پوشش و فلز تشکیل می‌شود و اتصال شیمیایی حاکمیت می‌شود. نایب شده که این فاز فایالیت است (۱). با بررسی آلیاژ

(۱) حضور برازم عناصر Fe و Si را نشان می‌دهد. از منطقه A در بیشتر مراجع، با نام جذری فلزی غنی Fe-Si از فایالیت تشکیل شده است و منطقه B مخلوطی نایکتوناخی از فایالیت و اکسید آهن اساطیر که در واقع باعث چسبندگی لعاب به فلز می‌شود. علاوه بر آن اکسیداسیون باعث تخلخل های بزرگ در فلز و نفوذ شیشه به داخل این تخلخل ها شده و چسبندگی فیزیکی خوبی را ایجاد می‌کند (۲). مهاجرت بونهای FeO از لعاب به فلز را می‌توان با نظریه الکترولیتی نیز توجیه کرد. بر طبق این نظریه، اکسیدهای حل شده در لعاب، در طول پخت به سطح خاک در ناحیه فلز می‌شوند. نتایج پیشین این، کالسیت و نیکل در مرز مشترک لعاب فلز، سل‌ها یا کاملاً ایجاد می‌کند که باعث آدنی‌شدگی سطح فلز و زیبایی

شدن آن می‌شود و چسبندگی لعاب به فلز را ممکن می‌سازد (۱۶).
شکل A - آلیاژ سیم (SEM) نمایشگر EDX
 نقطه A از مرز مشترک لبار- فلز نمونه لبار بدون اکسید سریم.

شکل B - آلیاژ سیم (SEM) نمایشگر EDX
 نقطه B از مرز مشترک لبار- فلز نمونه لبار اکسید سریم.
اسکید سرمی جزایر فایالیت کمتری دارد، بنابراین از لحاظ توزیعی لاک اکسیدی چسندگی لعاب کمتر است. با
دیده مرز بین لعاب فلز و مقابسه نریزی سطح نمونه‌ها، دیده می‌شود که مرز لعاب دارای اکسید سرمی زیری
کمتری نسبت به مرز لعاب بدون اکسید سرمی دارد. بنابراین از لحاظ توزیعی مانیکیژی و یا باید چسندگی کمتر
باشد. بنابراین می‌توان نتیجه گرفت که افزودن اکسید سرمی به لعاب، چسندگی آن را به یادپرز و کمتر
می‌کند. بر اساس نظریه الکترولیتی، خوردگی شدن آهن بهبود چسندگی لعاب و فلز خواهد شد. آهن نسبت به
سلح فلز توده و آندی شدن سرمی از خوردگی آهن و زبر شدن سطح فلز جلوگیری می‌کند. بنابراین
می‌توان نتیجه گرفت که افزودن اکسید سرمی به لعاب، چسندگی آن را به یادپرز و کمتر می‌کند.
شکل 10- تصویر SEM نمونه لعاب با لاک اکسید سرمی را نشان می‌دهد. با مقایسه این تصویر با
تصویر مربوط به نمونه لعاب بدون اکسید سرمی، می‌توان دیده کرد که مرز بین لعاب-فلز در این نمونه زبرتر
شده و همچنین تعداد جزایر فایالیت افزایش یافته است. که نشان‌دهنده نفوذ پیشرفت لعاب به فولاذ و نفوذ
آهن به مرز مشترک و برقراری پیوند با فاز سیلیکاتی و تشکیل خوردگی آهن با دو شکل‌های 5 و 6
دیده می‌شود که پوشش اکسید سرمی در دمای 200 درجه سانتی‌گراد ساختر مخلوطی دارد که باعث زبر
شدن سطح فلز می‌شود. می‌توان نتیجه گرفت که پوشش اکسید سرمی در دمای 200 درجه سانتی‌گراد ساختر، به صورت
مکانیکی باعث افزایش چسندگی لعاب به زیرپری فلزی می‌شود.

شکل 10- تصویر SEM از مرز مشترک لعاب-فلز نمونه لعاب با لاک اکسید سرمی.

4- نتیجه‌گیری
نانوژرات‌های اکسید سرمی با اندامه بلورهای 2-3 نانومتری و اندازه ذرات از 50 نانومتر سنگ شد و پس از ترکیب این
ذرات با لعاب در آن به طور یکتا تحت ترکیب و در ساختار شیشه‌ای لعاب به پایداری رسید. به افزودن این نانو
ذرات به لعاب، طبیعی انتقال الکترولیت و اندازه شدن سرمی، از خوردگی آهن جلوگیری شده و چسندگی لعاب
به یادپرز فلزی ضعیف شد. اما استفاده از این اکسید به عقبنشانی لاک اکسیدی در فلز مشترک لعاب-فلز، به علت
دشانی ساختاری مخلوطی به صورت مکانیکی چسندگی لعاب به پایه فلزی یا بهپایه بخشید.

مراجع
[1] مسعودی ابوجنگ، ف.، لعاب فلز، تشر جوان، 1376.
[2] نوروزی، م. و باشی، ام. و میرزی، ف. و دولشی، آ. و بازدید در مورد استفاده از لعابهای رفاهی که گرامین
آسیب به ورودی سیسیلیکاتی و آندی شدن سرمی، به علت
Connection to Energy Saving", nanomaterials and systems, 2010.

[7] M. J. Godinho, R. F. Goncalves, L. P. S. Santos, J. A. Varela, E. Longo, E. R. Leite, "Room temperature co-precipitation of nanocrystalline CeO\textsubscript{2} and CeO\textsubscript{0.8}Gd\textsubscript{0.2}O\textsubscript{1.9} powder", Materials Letters, Vol. 61, pp. 1904-1907, 2007.

