بررسی خواص ریسکارتی ماده کاتدی پوشش داده شده با لیتم زیرکونات LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2

مهدی رستمی، علیرضا ذاکری

دانشکده مهندسی معدن و مالاتوری، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده: با ایجاد ماده کاتدی به‌نام LiNiCoMnO، مولکوله‌ای که به‌دلیل بهترین امکان دارد با لیتم پوشش‌های شناخته شده است. این معنی می‌دارد که این ماده مشابه با لیتم بهترین مولکوله‌ای است که برای پوشش‌های شناخته شده است. در رشته‌های شناخته شده، آب‌کویی و مکانیکی، LiNiCoMnO نیز در نظر گرفته شده است. شیمیایی و فیزیکی این ماده مورد بررسی قرار گرفته است. با دادن ماده کاتدی اولین پوشش دو نمونه در مقادیر 3.1 و 5.8 درصد و ترتیب نمونه‌ها به ترتیب 1 و 2، مولکوله‌ای به‌نام LiNiCoMnO (LiNiCoMnO) از کلیه گردا یافته یک کلینیکی مولکوله‌ای مورد بررسی می‌باشد.

کلمات کلیدی: پوشش‌های لیتم-پوشش‌های دو-لیتم زیرکونات

1- مقدمه

پایان‌های قابل شار شنیده گردیدن لیتم-پوشش‌هایی به‌طور گسترده‌ای به عنوان یک منبع ارزش‌کاری‌کننده برای تجربه‌های کربنیکی قابل حمل استفاده به‌دست‌آمده و این روزهای کربنیکی ترسناک و در قابلیت از قبلاً پیش‌بینی شده است. ماده کاتدی LiNiCoMnO در حال حاضر به عنوان ماده کاتدی اصلی در باتری‌های لیتم-پوشش‌های جدید به‌دلیل عملکرد خصوصیات کربنیکی بالا و مهیج قابل پوشش کاری ساده است. یک روش می‌تواند به کار رودی باشد، این امر مورد بررسی قرار گرفته است. در مجموع نتایج تحقیق نشان داد که لیتم پوشش‌های لیتم زیرکونات به مقدار 3.1 و 5.8 درصد کاربردی و در مکانیکی لیتم پوشش‌های لیتم-پوشش‌های لیتم را بسیار بهتر می‌کند.
امامه به دلیل حضور‌های فعال و نابایدا در نیک‌های مادر آماده‌تر از مادری با مشکلات افت توانایی چرخ کاری رو به روست [۴۳]، به‌طوری که در نتیجه ضعیف‌ترين ناهنجاری‌ها با ماده‌های نامناسب‌های کامیک‌های مصرفی است که باعث رشد در بین رفت‌رفت‌های و عملکرد ضعیف در سرعت شارژ و دشواری‌ها NCM مشترک بین الکترود و کلرولیت، می‌باشد. این کلرولیت از نظر کلریک عایق این کلرولیت که به‌طور کلی فقط پوشش‌های گسترده‌تری را به‌طور کلی یک نمونه‌ی بالغ ماده کاتدی هم‌چنین تجزیه کلرولیت را کاهش می‌دهد و باعث کاهش فرآیندهای شارژ و دشواری شده‌اند. این کلریدهای بالغ فلزی تهیه از قبیل ZrO2 TiO2 ZrO2+Al2O3 و غیره بر روی سطح ماده کاتدی می‌تواند به طور قابل توجهی عملکرد کلریک کاری را از طریق جلوگیری از واکنش‌های ناخواسته در فلز‌های استیل‌پوشش شارژ/شیره بهبود یابد [۹].

امامه با به‌منظوره‌ی مطلق بی‌طرف ذکر شده در بالا، به‌طور جدی سازنده انتقالی الکتروسیمایی ماده کاتدی NCM مطرح شده است. برای موارد کاتدی با ساختارهای بلوری مختلف، سازنده‌ها باید متفاوت باشند. برای بهبود عملکرد الکتروسیمایی وجود دارد و لذا اجسام مخلوط موردی ضروری است. برای مثال، برای موارد کاتدی لیتیوم Li4Ti5O12 به‌طور کلی ناهنجاری که داره‌اند از NCM مشترک بین الکترود و کلرولیت است که باعث این اثر می‌شود. می‌شود. به‌طور کلی عملکرد ناهنجاری این هم‌چنین است که در دیال می‌تواند میزان ضعیف در سرعت شارژ و دشواری قرار گیرد. این پدیده به اسبب تشکیل شده در سطح ماده کاتدی نسبت داده شده است که منجر به واکنش‌های جانی شدن طی فرآیند شارژ و دشواری در ماده بالا است [۴۳].

به‌منظوره‌ی مطلق بی‌طرف ذکر شده در بالا، به‌طور جدی سازنده انتقالی الکتروسیمایی ماده کاتدی NCM مطرح شده است. برای موارد کاتدی با ساختارهای بلوری مختلف، سازنده‌ها باید متفاوت باشند. برای بهبود عملکرد الکتروسیمایی وجود دارد و لذا اجسام مخلوط موردی ضروری است. برای مثال، برای موارد کاتدی لیتیوم Li4Ti5O12 به‌طور کلی ناهنجاری که داره‌اند از NCM مشترک بین الکترود و کلرولیت است که باعث این اثر می‌شود. می‌شود. به‌طور کلی عملکرد ناهنجاری این هم‌چنین است که در دیال می‌تواند میزان ضعیف در سرعت شارژ و دشواری قرار گیرد. این پدیده به اسبب تشکیل شده در سطح ماده کاتدی نسبت داده شده است که منجر به واکنش‌های جانی شدن طی فرآیند شارژ و دشواری در ماده بالا است [۴۳].
رشد. همچنین برای بررسی ساختار بلوهی نمونه‌های مورد آزمایش، از دستگاه آنالیز الگوی پراش اشعه ایکس DRON 8 ساخت کنور رویه (با استفاده از اشعه ایکس Cu-Kα، تألیف موج 1/3 آنگستروم) مجهز به تک فاصله گرافیتی و برای بررسی ریخت‌شانسی ذرات نمونه‌های مورد آزمایش از میکروسکوپ الکترونیکی روشی تهیه شده و در میکروسکوپ Vega-tescan، با وانژال 5 کیلوپیک و نیز میکروسکوپ Philips EM 208 S، با وانژال شتاب 100 کیلوپیک استفاده شد.

برای بوشش‌دهی ماده کاندی تجاری LiNi0.5Co0.2Mn0.3O2 و همچنین با توجه به اینکه ماده بوشش از 2 مول ایتیم و 1 مول زرکونیم تشکیل شده است، مقادیر استوکومتری از پیش‌ساخت لیتیم استات 2 آب و پیش‌ساخت زرکونیم اکسی کریس 8 آب تریت در 100 و 50 میلی لیتر آب مقطّع در دما اتاق حل شدن. سپس ماده کاندی به مدت زمان 1 ساعت در محلول حاوی لیتیم استات در حمام فراصوت شد. در مدیر 80 درجه سانتی‌گراد قرار گرفت و سپس دما افزایش داده شد. پس از تبخیر کامل حلال، زل به دست آمد. در دیام 110 درجه سانتی‌گراد به مدت زمان 2 ساعت برای خشک کنن کاندی در آن قرار داده شد و سپس پور جریان باد آب مقطّع سختشوده داده شد. پس از شست و شوی کامل، محصول بوده حاصل در آن و در مدت زمان 3 ساعت قرار داده شد و در نهایت به مدت زمان 5 ساعت در دمای 110 درجه سانتی‌گراد تحت فرآیند کلسیسیپسون قرار گرفت. نمونه کلسینه شده پس از اینکه در کوره سرد شده، به منظور جلوگیری از جذب رطوبت در دسیکاتور قرار داده شد.

3- نتایج و بحث

3-1- بررسی فازی

در شکل 1 الگوی پراش اشعه ایکس برای نمونه‌های ماده کاندی تجاری LiNi0.5Co0.2Mn0.3O2 یافت شده و با مقادیر 3 و 5 درصد ونیز از ماده بوشش لیتیم زرکونیت برای مقایسه نشان داده شده است.

![شکل 1- الگوی پراش اشعه ایکس مربوط به نمونه‌های ماده کاندی تجاری LiNi0.5Co0.2Mn0.3O2 بدون بوشش، و بوشش داده شده با 3 و 5 درصد ونیز از ماده بوشش لیتیم زرکونیت.](image-url)

پیک‌های مربوط به این نمونه‌ها به شکل منظمی بر پایه ساختار هگزاگونال R-3m NaFeO2 به عنوان گروه فضایی α-Fe2O3 در حضور پیک‌های دوتایی جدا از هم مربوط به صفحات (101)/(010)/(210)/(100) بر رابطه 2θ = 38 درجه و 65 درجه نشان دهنده کسیک خاصی کاملاً بی‌دریای است. پیک‌های مربوط به ماده بوشش لیتیم زرکونیت در الگوی پراش اشعه ایکس مربوط به نمونه‌های با 1 و 3 درصد ونیز شناسایی شده‌اند و این احتمالاً می‌تواند به این دلیل باشد که مقدار ماده بوشش لیتیم
زیرکوانت کمتر از حد تخمین دستگاه بوده است [12]. در الگوی پراش اشعه اکس مربوط به نمونه ماده کانتنی با 5 درصد وزنی از ماده پویش، بید واقع در زاویه 34.6 درجه مربوط به ماده لیتیم زیرکوانت است [13]. وجود یافته بید دالات بر این دارد که ماده یافته زیرکوانت به صورت لیتیم زیرکوانت رود سطح ماده کانتنی است. فرض بر این است که ماده کانتنی در جریان فراآینده پویش دهی به صورت خشک عمل می‌کند و با ماده پویش لیتیم زیرکوانت وارد وکنش نمی‌گیرد و تنها به عنوان سطح انجام وکنش عمل می‌کند. در تیتیجه به دلایل بودن اندام ذرات در مقیاس میکروماتری، می‌تواند سرعت فراق پویش‌دهی را افزایش دهد.

2- محاسبه ثوابت شیبک

به منظور بررسی کمی نتایج حاصل از آنالیز الگوی پراش اشعه ایکس و به طور خاص، محاسبه ثوابت شیبک نمونه‌های مورد آزمایش از روش کوهن استفاده شده است. روش کوهن به منظور تعیین ثوابت شیبک مواد با ساختار غیرمدلی که شباهت به یک ثابت شیبک دارند استفاده می‌شود. اگرچه محاسبات مورد استفاده در روش ثابت شیبک در مواد با ساختارهای غیرمدلی پیچیدهتر از محاسبات مورد استفاده برای ثابت شیبک در مواد با ساختار مدلی است، اما روش کوهن مستقیم‌تر را برای ثابت شیبک در این ساختارها فراهم می‌کند [13]. لازم به ذکر است که به منظور تعیین معادله پیک در الگوی پراش اشعه ایکس نمونه‌های مورد آزمایش از شدت بیشینه (I_{0}) استفاده شده است. محاسبات مورد استفاده جهت محاسبه ثوابت شیبک با استفاده از روش کوهن به شرح زیر می‌باشد:

\[\sum y \sin^2 \theta = C \sum y + \sum a \sin^2 \theta + \sum a \sin^2 \theta + \sum a \sin^2 \theta \]

\[C = \frac{\lambda^2}{4 \pi^2} \left(k_1 \right) \left(k_2 \right) \]

\[\sum y \sin^2 \theta = C \sum y \sin^2 \theta + \sum a \sin^2 \theta + \sum a \sin^2 \theta \]

\[\sum a \sin^2 \theta = C \sum a + \sum a \sin^2 \theta + \sum a \sin^2 \theta \]

در معادلات نشان دهنده شده به منظور محاسبه ثوابت شیبک در مواد با ساختار هگزاگونال منظور از k1 و 14 عدد میلر می‌باشند.

Cohen method

2 Cation mixing
توییز یکنواخت کاتون‌ها در میان ساختار دالآت دارد. بنابراین، با انرژی گرینق مقدار \(\alpha \) در جدول 1 برای نمونه‌های پویش داده شده، مولکولی که پوشش‌دهنده ZrO\(_2\) بروی ماده کاتانی به منظور حفظ شیست ساختار لاگامی کمک کرده است.

جدول 1- مقادیر توابع شکوه مربوط به نمونه ماده کاتانی بدون پویش و پویش داده شده با مقدار مختلف نیم‌یوز کنات در پژوهش حاضر

<table>
<thead>
<tr>
<th>(c_0/a_0)</th>
<th>(a_0 (\text{A}))</th>
<th>ماده کاتانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون پویش</td>
<td>2/876</td>
<td>با 1 درصد ونی ماده پویش</td>
</tr>
<tr>
<td>2/867</td>
<td>با 2 درصد ونی ماده پویش</td>
<td></td>
</tr>
<tr>
<td>2/854</td>
<td>با 3 درصد ونی ماده پویش</td>
<td></td>
</tr>
<tr>
<td>2/849</td>
<td>با 4 درصد ونی ماده پویش</td>
<td></td>
</tr>
<tr>
<td>2/844</td>
<td>با 5 درصد ونی ماده پویش</td>
<td></td>
</tr>
</tbody>
</table>

به منظور مقایسه، مقادیر گرانش شده نمونه شکه برای ماده کاتانی \(\text{LiNi}_{0.5}\text{Co}_{0.2}\text{Mn}_{0.3}\text{O}_2 \) بدون پویش در پژوهش‌های پیشین [16-20] به همراه میانگین و انحراف میانی این مقادیر در جدول 2 در جدول 2 ارائه شده است. همچنین در جدول 2 اخلاک مقادیر توابع شکوه محاسبه شده با استفاده از روش کوهن برای نمونه ماده کاتانی بدون پویش و پویش داده شده با تیپ متریک‌های مربوط به پژوهش حاضر، با مقادیر میانگین حاصل از پژوهش‌های پیشین ارائه شده است. جاتانه مقدار اختلاف محاسبه شده برای نمونه پویش داده شده از اخلاق اخلاق داده شده با دست آمده برای نمونه ماده کاتانی بدون پویش کمتر باشد. می‌توان تجربه گرفت که توابع شکوه مورد نظر در اثر پویش‌های تغییر نکرده و در نتیجه ساختار ماده کاتانی دچار یک نظریه تعیین نشده است. با توجه به داده‌های موجود در جدول 3، مقدار اختلاف در نتایج شکه a برای نمونه با 1% ونی ماده پویش از مقدار اختلاف محاسبه شده برای نمونه ماده کاتانی بدون پویش کمتر است. همچنین مقدار اختلاف شکوه a برای این نمونه کوچکتر از نمونه‌های پویش داده شده با 3 و 5 درصد ونی است. این مقایسه‌ها نشان می‌دهد که ساختار نمونه ماده کاتانی با حضور 1% ونی ماده پویش در اثر تمیزی نگه داشت. این با حالی است که برای نمونه‌های با 3 و 5 درصد ونی ماده پویش، اختلاف مقادیر توابع شکوه آنها بیشتر از اختلاف محاسبه شده برای نمونه ماده کاتانی تجاری بدون پویش است. لذا، می‌توان تجربه گرفت که ساختار این دو نمونه در اثر پویش دچار تغییر زیادی شده است. با توجه به نتایج به دست آمده از این تحلیل، نمونه ماده کاتانی با 1% ونی ماده پویش به عنوان نمونه بهره‌برداری نیم‌یوز پویش مورد بررسی انتخاب می‌شود.

جدول 2- مقادیر توابع شکوه مربوط به نمونه ماده کاتانی بدون پویش در پژوهش‌های پیشین

<table>
<thead>
<tr>
<th>مرجع</th>
<th>(c_0 (\text{A}))</th>
<th>(a_0 (\text{A}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>He et al. [16]</td>
<td>12/12260</td>
<td>2/8498</td>
</tr>
<tr>
<td>Cao et al. [17]</td>
<td>14/144231</td>
<td>2/8498</td>
</tr>
<tr>
<td>Shi et al. [18]</td>
<td>14/142406</td>
<td>2/8498</td>
</tr>
<tr>
<td>Tao et al. [19]</td>
<td>14/14379</td>
<td>2/8497</td>
</tr>
<tr>
<td>Jia et al. [20]</td>
<td>14/14320</td>
<td>2/8496</td>
</tr>
<tr>
<td>میانگین</td>
<td>14/143256</td>
<td>2/8476</td>
</tr>
<tr>
<td>انحراف معیار</td>
<td>80/10189</td>
<td>1/0000</td>
</tr>
</tbody>
</table>

جدول 3- اختلاف مقادیر توابع شکوه مربوط به نمونه‌های بدون پویش و پویش داده شده در پژوهش حاضر با میانگین مقادیر توابع شکوه ماده کاتانی بدون پویش مستخرج از پژوهش‌های پیشین

<table>
<thead>
<tr>
<th>(\Delta c_0 (\text{A}))</th>
<th>(\Delta a_0 (\text{A}))</th>
<th>ماده کاتانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون پویش</td>
<td>0/0</td>
<td>1/12</td>
</tr>
<tr>
<td>0/289</td>
<td>0/200</td>
<td></td>
</tr>
<tr>
<td>0/564</td>
<td>0/2015</td>
<td></td>
</tr>
<tr>
<td>0/129</td>
<td>0/2063</td>
<td></td>
</tr>
<tr>
<td>0/916</td>
<td>0/113</td>
<td></td>
</tr>
<tr>
<td>با 1% ونی پویش</td>
<td>0/0</td>
<td>1/12</td>
</tr>
<tr>
<td>0/289</td>
<td>0/200</td>
<td></td>
</tr>
<tr>
<td>0/564</td>
<td>0/2015</td>
<td></td>
</tr>
<tr>
<td>0/129</td>
<td>0/2063</td>
<td></td>
</tr>
<tr>
<td>0/916</td>
<td>0/113</td>
<td></td>
</tr>
<tr>
<td>با 3% ونی پویش</td>
<td>0/0</td>
<td>1/12</td>
</tr>
<tr>
<td>0/289</td>
<td>0/200</td>
<td></td>
</tr>
<tr>
<td>0/564</td>
<td>0/2015</td>
<td></td>
</tr>
<tr>
<td>0/129</td>
<td>0/2063</td>
<td></td>
</tr>
<tr>
<td>0/916</td>
<td>0/113</td>
<td></td>
</tr>
<tr>
<td>با 5% ونی پویش</td>
<td>0/0</td>
<td>1/12</td>
</tr>
<tr>
<td>0/289</td>
<td>0/200</td>
<td></td>
</tr>
<tr>
<td>0/564</td>
<td>0/2015</td>
<td></td>
</tr>
<tr>
<td>0/129</td>
<td>0/2063</td>
<td></td>
</tr>
<tr>
<td>0/916</td>
<td>0/113</td>
<td></td>
</tr>
</tbody>
</table>
3- بررسی تصادف میکروسکوب الکترونی روشی به منظور بررسی ریخت‌شناسی ذرات مربوط به نمونه ماده کاندنی تجاری
LiNiO₂CO₃MnO₃ بر روی پوشش و پوشش داده شده با لیتیوم زیرکونیت، از تصادف میکروسکوب الکترونی استفاده شد. تصادف میکروسکوب الکترونی رویشی‌ها با پزشک‌مانی 1500 برابر مربوط به نمونه ماده کاندنی بدون پوشش و پوشش داده شده با 1 و 5 درصد وزنی از ماده پوشش لیتیم زیرکونیت در شکل 2 نشان داده شده است. همانطور که مشاهده می‌شود، ریخت‌شناسی سطح نمونه ماده کاندنی بدون پوشش با نمونه‌های پوشش‌دار شده کاملاً متفاوت است.

شکل 2- تصادف میکروسکوب الکترونی رویشی مربوط به (الف) ماده کاندنی تجاری LiNiO₂CO₃MnO₃، (ب) ماده کاندنی با 1٪ وزنی ماده پوشش، (پ) ماده کاندنی با 1٪ وزنی ماده پوشش و (ت) ماده کاندنی با 1٪ وزنی ماده پوشش.

مطالب با شکل 2-الف، ذرات ماده کاندنی بدون پوشش از ذرات اولیه چند سطحی تشکیل شده‌اند و این ذرات در این سطوح صاف و بدون هیچ گونه تناخلی به روند سطح مستقیم همچنین این ذرات اولیه هر کادم از تعداد زیادی ذرات ثانویه با اندازه‌ای در مقیاس کمتر از میکرومتر تشکیل شده‌اند و میزان مجزای بین آنها به راحتی قابل مشاهده است. مطالبی شکل 2-ب، ذرات سطح ذرات نمونه ماده کاندنی بدون پوشش داده شده با 1٪ وزنی از ماده پوشش لیتیم زیرکونیت، ذرات ماده پوشش تقریباً به صورت یک‌واکه بر روی سطح ذرات ماده کاندنی قرار گرفته‌اند و در مناطق محدودی تراکم ماده پوشش مشاهده می‌شود. البته میزان زبری در سطح ماده کاندنی بدون پوشش داده شده با 1٪ وزنی از ماده پوشش نسبت به ماده کاندنی بدون پوشش به میزان بیشتری مشاهده می‌شود که این میزان زبری افزوده به حضور ماده پوشش لیتیم زیرکونیت نسبت داده می‌شود. همچنین در نمونه ماده کاندنی تجاری پوشش داده شده با 1٪ وزنی از ماده پوشش بیشتر شکافه‌ای بین ذرات ثانویه در هر ذره اصل به شکل واضح قابل مشاهده هستند. در شکل 2-پ، ذرات مربوط به نمونه ماده کاندنی بدون پوشش داده شده با 1٪ وزنی از ماده پوشش لیتیم زیرکونیت نشان داده شده است. مطالب با شکل 2-پ، با توجه به افزایش درصد وزنی ماده پوشش و همچنین ضخامت لایه پوشش لیتیم زیرکونیت میزان زبری سطح نمونه ماده کاندنی بدون پوشش داده شده با 1٪ وزنی ماده پوشش بیشتر است و همچنین شکافه‌ای بین ذرات ثانویه در نمونه پوشش داده شده با 1٪ وزنی ماده پوشش به میزان بیشتری توسط ماده پوشش پر شده است.
در شکل ۲-۱، ذره مربوط به نمونه ماده کاتدی پوشش داده شده با ۵٪ وزنی از ماده پوشش لیتیم زیرکونات نشان داده شده است. مطالب شکل، با توجه به افزایش درصد وزنی ماده پوشش و همچنین ضخامت شندن لایه پوشش لیتیم زیرکونات، میزان زبری سطح نمونه ماده کاتدی پوشش داده شده با ۵ درصد وزنی ماده پوشش نسبت به نمونه‌های پوشش داده شده با ۱ و ۳ درصد وزنی ماده پوشش بیشتر است.

همچنین، هزاران نمودار در نمونه پوشش داده شده با ۵٪ وزنی ماده پوشش نسبت به نمونه‌های پوشش داده شده با ۲٪ وزنی ماده پوشش و ۲٪ وزنی ماده پوشش به میزان پیشرفت‌بر دسته است. با توجه به این که وجود مقدار اضافی از ماده پوشش لیتیم زیرکونات به عنوان جلوگیری توسط سطح پوشش بر دسته، می‌تواند از درون ذرات نانویی خواهد شد [۲۱]. انظار می‌روند که در بین نمونه‌های مورد آزمایش نمونه ماده کاتدی پوشش داده شده با ۲٪ وزنی از لیتیم زیرکونات عمکرد الکتروشیمیایی بهتری نسبت به سایر نمونه‌ها از خود نشان دهد.

۲-۴ آنالیز عنصری پوشش

به منظور بررسی یکتایی توزیع عنصر در نمونه ماده کاتدی تجاری NiO، LiNi۰۵۸Co۰۲۵Mn۰۲۵O۲ به نمونه پوشش داده شده با ۱٪ وزنی لیتیم زیرکونات، آنالیز طیف‌سنجی اشعه ایکس انتزی متقوق بر روی نمونه انجام گرفت. مطالب با شکل ۳، آنالیز نشان داد که نمونه‌های گرفته شده با توجه به شکل منظم و زیرکونیم به صورت یکتایی توزیع سطح ماده کاتدی توزیع شدهاند. همچنین نمایان ذرات لیتیم زیرکونات به شکل واضحی در نقشه مربوط به نمونه با ۱٪ وزنی ماده پوشش قابل مشاهده است و این موضوع نشان می‌دهد که لایه پوشش لیتیم زیرکونات به شکل یکتایی بر روی سطح به کاتدی قرار گرفته است. این توزیع یکتایی به عنوان یک یا حافظ عمل می‌کند، و نقش مهمی را در ارتباط عمکرد چرخه کاری و همچنین عمکرد باتری در سرعت‌های شارژ/شدار مختلف برای ماده‌های کاتدی پایدار خواهد کرد [۲۱].

شکل ۳- نتایج مربوط به نمودار حاصل از آنالیز طیف‌سنجی اشعه ایکس آزمایش شده بر روی مربوط به عنصر تیتانیوم، کالسیوم، منگنز و زیرکونیم برای نمونه ماده کاتدی تجاری NiO، LiNi۰۵۸Co۰۲۵Mn۰۲۵O۲ به نمونه پوشش داده شده با ۱ درصد وزنی از ماده پوشش لیتیم زیرکونات.
پرای بررسی دیفراکتوری ریخت شناسی نمونه پوسشت داده شده، در شکل ۴ تصاویر میکروسکوپ الکترونی عبوری مربوط به ماده کاندی

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

 البته نمونه‌های ماده کاندی بدون پوسشت و (ب) نمونه‌های ماده کاندی پوسشت داده شده با ۱/۱ وزنی ماده پوسشت.

شکل ۴- تصاویر میکروسکوپ الکترونی عبوری (الف) نمونه ماده کاندی بدون پوسشت، و (ب) نمونه ماده کاندی پوسشت داده شده با ۱/۱ وزنی ماده پوسشت.

نتیجه‌گیری

در پژوهش حاضر بررسی ساختاری ماده کاندی تجاری

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

اول نمونه‌های ماده کاندی تجاری

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

بای حضور ۵/۶٪ و

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

بای حضور ۵/۸٪ وزنی از ماده پوسشت لیتیم زیرکونات با استفاده از روش سل-زد و در محفظه ای اتوماسیز شدند و سپس به منظور بررسی ساختاری تحت آنالیز قدر دادند. بررسی‌های ساختاری با استفاده از آنالیز الگوی پراش اشعه ایکس و تصاویر میکروسکوپ الکترونی رویشی و غیرینمای شد.

۱- در بررسی کیفیت نتایج به دست آمده از آنالیز الگوی پراش اشعه ایکس مربوط به نمونه‌های ماده کاندی بدون پوسشت و پوسشت داده شده، یک‌هایه مربوط به نمونه‌های مورد آزمایش شکل منظمی بر پایه ساختار هیدروگناتال

\[
\text{α-NaFeO2} \]

با گروه فضایی R-3m

۲- در بررسی عملکرد نتایج به دست آمده از آنالیز الگوی پراش اشعه ایکس این نتیجه به دست آمده که در این چهار نمونه موجود در محفظه

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

با چهار جاجای یک فصل مشترک بر روی ماده کاندی، به داخل ماده تقویز کرد. است

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

و ساختار ماده کاندی را دچار تغییر نموده است اما این تغییر برای مقدار ۱/۱ وزنی از ماده پوسشت در مقایسه با این سایر نمونه‌ها کمتر بوده است.

۳- در بررسی ریخت شناسی نمونه‌های مورد آزمایش با استفاده از تصاویر میکروسکوپ الکترونی رویشی، درت ماده کاندی تجاری

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

بدون پوسشت به صورت ذرات اولیه چند سمی و با سطوح صاف و بدون حضور هیدروگناتال ناخالصی بر روی سطح نشان دادند. به همین دلیل در تجارت

\[
\text{LNIo.5Co0.2Mn0.3O2} \]

پوسشت داده شده با ۱/۱ وزنی از ماده پوسشت لیتیم زیرکونات، درت ماده پوسشت تقسیم به

\[
\text{LNIo.5Co0.2Mn0.3O2} \]
در سطح ماده کاندی قرار گرفته بودند و در مناطق محدودی تراکم ماده پوشش مشاهده شد. همچنین در تعیین ماده کاندی تجاری پوشش داده شده با ۱٪ و ۵٪ وریزی از ماده پوشش شکاف‌های بین ذرات تاناهیه در هر دو اصل به شکل واضحی قابل مشاهده بود. در تهیه ماده کاندی پوشش داده شده با ۲۳٪ وریزی و ۵٪ وریزی ماده پوشش، میزان زبری سطح ماده نسبت به ماده کاندی پوشش داده شده با ۱٪ وریزی ماده پوشش بیشتر شد و همچنین شکاف‌های بین ذرات تاناهیه در ماده پوشش داده شده با ۳٪ وریزی و ۵٪ وریزی ماده پوشش به‌طور مشابه بود.

در بررسی دقیق ریخت شناسی ذرات ماده کاندی تجاری LiNi۵۰Co۵۰Mn۰۱۲ به‌طور مستقیم از تصاویر میکروسکوپ الکترونی عمودی، لایه پوشش ایجاد شده بر روی سطح ذره ماده کاندی پوشش داده شده با ۱٪ وریزی از ماده پوشش لیتیم زیرکونات به صورت همگن و با ضخامتی در حدود ۱۵۰ نانومتر و همچنین به‌طور قابل مشاهده بود.

در بررسی نتایج حاصل از آنالیز طیف‌سنجی شعاع ایکس انرژی مشخصه توزیع عناصر در تهیه ماده کاندی تجاری LiNi۵۰Co۵۰Mn۰۱۲ از ماده پوشش لیتیم زیرکونات نشان داده شد که در تهیه ترکیب مولیکول‌ها، بیان‌های ترکیبی به‌طور همخوانی و روی سطح نمونه ماده پوشش داده شده با ۱٪ وریزی از ماده پوشش لیتیم زیرکونات توزیع کرده‌اند. در مجموع با توجه به نتایج بدست آمده برای ماده کاندی، مقدار ۱٪ وریزی ماده پوشش به دلیل تغییرات ساختاری اندک در ذرات فراآید پوشش‌دهی و توزیع یکنواخت بر روی ماده کاندی می‌تواند به عنوان مقدار بهینه انتخاب شود.

مراجع

[2] Chao Chen, Tao Tao, Wen Qi, Hong Zeng, Ying Wu, Bo Liang, Yingbang Yao, Shengguo Lu and Ying Chen, High-performance lithium ion batteries using SiO$_2$-coated LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ microspheres as cathodes. 2017: 709: p. 708-716.

[8] Ding Wang, Xinhai Li, Wanlin Wang, Zhixing Wang, Huajun Guo andJuanjian Ru, Improvement of high voltage electrochemical performance of LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode materials via LiZrO$_2$ coating. Ceramics International, 2015. 41(5): p. 6663-6667.

[10] Yue Xu, Yang Liu, Zhongpei Lu, Haiying Wang, Deqin Sun and Gang Yang, The preparation and role of
Li$_2$ZrO$_3$ surface coating LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ as cathode for lithium-ion batteries. Applied Surface Science, 2016. 361: p. 150-156.

[11] Yong Liu, Shiliang Shi, Geoff G.X.Wang, Yi Lu and Wangxin Gu, Improved electrochemical properties and thermal stability of Li$_{1.20}$Mn$_{0.54}$Ni$_{0.16}$Co$_{0.10}$O$_2$ cathode material by Li$_2$ZrO$_3$ coating for Lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019. 30(20): p. 18471-18483.

[12] Yue Xu,Yang Liu, Zhongpei Lu, Haiying Wang, Deqin Sun and Gang Yang, The preparation and role of Li$_2$ZrO$_3$ surface coating LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ as cathode for lithium-ion batteries. Applied Surface Science, 2016. 361: p. 150-156.

[13] Young-Jin Kim, Rajesh Rajagopal, Sung Kang and Kwang-Sun Ryu, Novel dry deposition of LiNbO$_3$ or Li$_2$ZrO$_3$ on LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ for high performance all-solid-state lithium batteries. Chemical Engineering Journal, 2020. 386: p. 123975.

[15] Jiwen Li, Yong Liu, Wenli Yao, Xianfa Rao, Shengwen Zhong and Liwu Qian, Li$_2$TiO$_3$ and Li$_2$ZrO$_3$ co-modification LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode material with improved high-voltage cycling performance for lithium-ion batteries. Solid State Ionics, 2020. 349: p. 115292.

[16] Yulin He, Ying Li, Chaoxiang Xu, Mingyuan Zhu and Wenxian Li, Improvement in the cycling stability and rate capability of LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode material via the use of a Ta$_2$O$_5$ coating. Ceramics International, 2020. 46(10): p. 14931-14939.

[17] Guolin Cao, Zhuomin Jin, Jie Zhu, Yunjiao Li, Bin Xu, Yike Xiong and JiachaoYang, A green Al$_2$O$_3$ metal oxide coating method for LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode material to improve the high voltage performance. Journal of Alloys and Compounds, 2020. 832: p. 153788.

[18] Yang Shi, Minghao Zhang, Ying Shirley Meng and Zheng Chen, Ambient-pressure relithiation of degraded LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Advanced Energy Materials, 2019. 9(20): p. 1900454.

[19] Tao Tao, Chao Chen, Wen Qi, Bo Liang, Yingbang Yao and Sheng-GuoLu, Antimony doped tin oxide-coated LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode materials with enhanced electrochemical performance for lithium-ion batteries. Journal of Alloys and Compounds, 2018. 765: p. 601-607.

[20] Xiaobo Jia, Mo Yan, Ziyou Zhou, Xianglei Chen, Chao Yao, De Li, Daming Chen and Yong Chen, Nd-doped LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ as a cathode material for better rate capability in high voltage cycling of Li-ion batteries. Electrochimica Acta, 2017. 254: p. 50-58.

[21] Ding Wang, Xinhai Li, Zhixing Wang, Huajun Guo, Zhenjun Huang, Lingkun Kong and Juanjian Ru, Improved high voltage electrochemical performance of Li$_2$ZrO$_3$-coated LiNi$_{0.5}$Co$_{0.5}$Mn$_{0.5}$O$_2$ cathode material. Journal of Alloys and Compounds, 2015. 647: p. 612-619.

[22] Zhaoxin Guo, Tengfei Ma, Ting Ting Xu, Yan Chen, Gang Yang and Yuhong Li, Amorphous Li$_2$ZrO$_3$ nanoparticles coating Li[Li$_{0.1}$Mn$_{0.38}$Ni$_{0.25}$]O$_2$ cathode material for enhanced rate performance and lithic performance in lithium ion storage. Materials Chemistry and Physics, 2020. 255: p. 123593.