سیمان سربارهای قلیا فعال

سارا احمدی، حسین نورانیان
پژوهشگاه موارد و انتزاع
S-Ahmadi@merc.ac.ir

چکیده: افزایش استفاده از سیمان در تجهیزات و سازه‌ها نقش مهمی دارد. در حال حاضر انواع مختلف سیمان پرلتن با کاربرد متعددی در شرایط مختلف از جمله استفاده در محصولات زیستی استفاده می‌شود. سیمان سربارهای قلیا فعال که در تولید آن از شیوعات ایزوترموژنیک و فعال استفاده می‌شود، می‌توانند ارزشمندی سرمایه‌ای برای کاربردهای سیمان پرلتن باشند. این سیمان کاربردهای مهمی در تولید محصولاتی از قبیل لوله‌های میکروابطابخرهای فعالات، بتن‌های مقاوم در برابر خورشید و حیرت، کنترل باکتری‌های رادیوکاتیو و محصولاتی دارد.

1- مقدمه
تولید صنعتی سیمان سرباره قلیا فعال (AAS) از اوکراین و در سال‌های 1964-1971 آغاز شد. سرباره یک محصول جانبی در صنعت موادهای است که می‌تواند به‌عنوان قالب‌های فعال شود و تاکید سیمانتیک و چسبندگی تولید کند. استفاده از سرباره به عنوان شیوعات صنایع فولاد، استفاده کمتر از آن در تولید آن و وزارت کمتر به محتوای ماده آن می‌تواند باعث این امر باشد. این سرباره به صورت هیدروکلیسیبا با گرمایی 360°C و مقاومت هیبریدی سیمان، هم‌زمان و سیمانتیک و نیز زنامه‌ای در مقابل گریز سریع، اقتصاد بالاتر و در نتیجه ترک خوردن و واشنگ‌های انسانی به علت واشنگ قلیا و سیمانتیک می‌باشد.

2- مواد اولیه و شکل‌دهی

2.1- سرباره
سرباره‌ها موجود در سنگ‌معدن و کک که با اجرای عطر از آن در سبک سرباره می‌تواند مذاب می‌شود. اگر این سرباره تا دمای 800°C سریع سرد شود، به می‌باشد شیافت می‌باشد. برای استفاده در صنعت سیمان تبدیل می‌شود. سرباره قرآن‌نگر خرد شده، ماده‌ای است که فقط با خشونت یک فعال کشیده مناسب می‌باشد. هیدروکلیسیبا می‌باشد که با هم و با سرامق سرباره قلیا فعال (AAS) ماده‌ای هیدروکلیسیبا است. بر خلاف سایر مواد هیدروکلیسیبا که این خصایص را دارد. در مقیاس مخلوط شدن با آب و ماده‌ای AAS استفاده می‌شود. S و C به ترتیب علائم اختصاصی مربوط به CAO و SiO2 می‌باشد.

2.2- فعال سازی
اگر سرباره قرآن‌نگر، خرد شده و با آب مخلوط گردد، لایه‌های نازک هیدراته شده حاوی SiO2 و CaO در سطح ذرات تشکیل می‌شود. در این حالت PH سیستم به 10 می‌رسد. وجود لایه هیدراته فوق در سطح ذرات
سرابره، باعث قطع شدن و اکتش هیدراته شدن می‌گردد. فاصله کندنهای قلیانی
فاز سیالی را افزایش داده و از تشکیل لاشه مخاط در سطح سرشار چربیکی می‌کند و در تریش هلالیت فاز شیشه سرشار آبها می‌باشد.

فکر کندنهای قلیانی، شکست بازهم موجود در ساختار فاز شیشه سرشار و پناهی افزایش سرعت حل

شدن اجازه بودن است (2).

مکمل‌آر از سیلیکات سدیم به صورت بودری یا سیچ، هیدروکسیدسدیم محلول، کربنات سدیم به عنوان
فکر کندنه استفاده می‌شود و در برخی مقالات استفاده از سولفات سدیم، هیدروکسیدپاتاسیم، گچ
المینات سدیم، اکس هیدراته و ارتوسولفات سدیم بیش از گزارش شده‌اند (4). فکر کندنه در مقداری در حدود
2-10% وقیا سرشار اضافه می‌شوند (4). ترکیب سرشارها با توجه به مدار اولیه استفاده شده و فرآیند دستی،
متقاد است. پناه‌ی در هر مورد باید مناسب‌ترین فکر ساز متقاد و استفاده شود.

نوع و مقدار فکر ساز در ارتفاع دوی یا بالاتر مهم‌ترین کل‌های مکمل‌آرهای سیمان AAS را تحت تاثیر قرار
می‌دهد. نتایج نشان می‌دهد که بین‌های تهیه شده از فکر ساز سیلیکات سدیم، زمین گیر شکستی در
مقایسه با فکر کندنهای کربنات سدیم و هیدروکسیدسیدیم. پناه‌ی استفاده از کانکر دارند. این
فکر کندنه در نوع و فکر کندنه بستگی دارد. از فکر سازهای مختلف بر فراز نمونه سالاری، نمونه
کانکرها متقاد موجود در آنها است. یک محلول غلیظ از سیلیکات سدیم، شامل کانکر های
آتیوتیو سیلانی‌ها به نسبتی های نا1 و NaO1
متقاد محلول‌های هیدروکسیدسیدیم و کربنات سدیم شامل کانکر های
می‌باشد. در HCO3 و OH- و آتیوتیو های
به دلیل اینی لیتل سیلنیم فکر شده با سیلیکات سدیم گیر شده سریع‌تر دارند(5). کار پذیری
ملاق‌های فکر شده با سیلیکات سدیم مابه کمتر از ملاق فکر شده با سیلیکات سدیم بودری است. زیرا
نوع بودری سیلیکات سدیم بسیار بهتر است کیلایی به داخل سیلنیم آزاد می‌کند و در تریش متقاد و
اولیه استفاده‌است (6).

(2-3) ازفودری ها

انواع مختلفی از ازفودری‌ها ایران‌نشان مانند لیگوسولفات‌ها، هتنوعی، ویژه گلیلیم، مالامین و مشتقات
پلی کربولیت وجود دارد. این ازفودری‌ها روی ذرات سیمان چربش شده و بین آنها دفاعی اکتراساتین
ایجاد می‌کند و پناه‌ی بیشتر در حالت فلزیک شدن به معنی سیلیکات پلی پروپیلیئن گلیکول، کنکر سطحی آب موجود در حفرات بین
را کرده و پناه‌ی وقتی آب تبخیر نمی‌شود. کانکر کانپالیتری در ساختار حفرات کانکر و اکتش
به دلیل اینی لیتل سیلنیم فکر شده با سیلیکات سدیم گیر شده سریع‌تر دارند(5). کار پذیری
ملاق‌های فکر شده با سیلیکات سدیم مابه کمتر از ملاق فکر شده با سیلیکات سدیم بودری است. زیرا
نوع بودری سیلیکات سدیم بسیار بهتر است کیلایی به داخل سیلنیم آزاد می‌کند و در تریش متقاد و
اولیه استفاده‌است (6).

(2-3) ازفودری ها

برای تولید بتن از سگ دانه‌های راچی در سیمان برکلند استفاده می‌شود.
۳–۲–۱ آبین رطوبت

گزارش شده است که دست دادن رطوبت در آتارگه‌های بین در هوا، استحکام ۲۸ روزه را کاهش می‌دهد [۱۶]. نتایج مشابه دیدگی نیز گزارش شده است. انتقاد خشک شدن نیز تحت تاثیر شرایط بیرونی است و در حالی که در رطوبت‌های نسبی opc است، در رطوبت‌های بالای ۲۰٪ انتقاد بینی AAS تقریباً مشابه است [۱۶]. در حالتی که در رطوبت‌های نسبی opc است، ۲۳٪ و ۵۰٪ انتقاد خشک شدن opc است [۱۶].

۳–۲–۲ آبین ۱۴ روزه

وقتی بیرونی opc در دمای بالا انجام می‌شود، استحکام بینهای سیمان AAS سریعاً افزایش می‌یابد. اما بعد از یک ماه و بالاتر، استحکام بینهای AAS بیرونی گردش در دمای بالا ۲۵±۵٪ کمتر از نمونه‌های بیرونی گردش در دمای آتاق است. دیلی (۲۰۱۰) این موضوع را در رطوبت‌های اولیه افزایش چهار برابر سریع‌تر شدن قبل از فعال شدن می‌شود، اما با گذشت زمان در دماهای بالاتر، مقدار محصولات واکنش بیشتر شده و توزیع آن هم یکپارچه خواهد بود. دیگر روزنده مشترک شده و واکنش بیش آرایی می‌رود [۲۰].

![AASC در حال آزمایش](chart.png)

[۱۲] AASC ۱۴ روزه‌ای با طول ۱۰ روزه‌ای بین حاصل از سیمان بیرونی معمولی (opc) است. بنابراین توجه به شرایط بیرونی AAS بسیار ضروری است [۱۲].

۳–۲–۳ آبین ۳ روزه

وقتی بیرونی opc در دمای بالا انجام می‌شود، استحکام بینهای سیمان AAS سریعاً افزایش می‌یابد.
4- مطالعات و اکتشاف هیدراته شدن سرباره قیلی عناصر

4-1 محتوای واکنش هیدراته شدن سرباره قیلی عناصر

کلیه سیمان پرلتن شامل چهار فاز اصلی, C3S, C2S, C3A, C4AF و C4AH است که در آنها به F و A, C, S, M و Fe2O3 و Al2O3 و SiO2 ترتیب می‌باشد. محتوای اصلی هیدراته شدن سرباره قیلی عناصر (C-S-H) و کلسیم هیدراته یا (Ca(OH)2) از هیدراته شدن Ca/Si در زل گزارش شده‌اند.

4-2 ترکیب واکنش محلولی هیدراته شدن سرباره قیلی عناصر

ضایعت بروز اینون در محلول‌های قلیلی استفاده شده، نیز در محلول‌های Ca-Si-O, Al-O, Fe2O3 و SiO2 ضایعات قلیلی می‌باشد. سطح قلیلی CaSi2، Ca2Si2O5، Ca2Si2O7 و Ca2Si2O7 ضایعات شکل دهنده ماده را تولید می‌کند. بخش انتخابی این فاز به شکل‌ها و ساختار‌های شکل‌دهی‌شده در سرباره می‌باشد.

4-3 ریز ساختار سرباره قیلی عناصر و مقایسه با سیمان پرلتن

ریز‌ساختار سرباره قیلی عناصر نسبت به سیمان پرلتن تخلخل کمتری دارد. زیرا نسبت A/B به همین سازنده سرباره C-S-H سیمان پرلتن به ساختار AAS انتقال داده شده.

4-4 معرفی سپرک‌پذیری سرباره قیلی عناصر و مقایسه با سیمان پرلتن

می‌توان به عنوان ریز‌ساختار قیلی عناصر در سازنده سرباره قیلی عناصر نسبت به سیمان پرلتن تخلخل کمتری دارد. زیرا استفاده از سیمان پرلتن برای سازنده سرباره قیلی عناصر نسبت به سیمان پرلتن از دست داده شده است.

[Ref: 2018/10.117351/138.51.12]
قالب تخصصی بهترین شده در دمای ℃ به مدت 6 ساعت و نگهداری شده در حمام آب به مدت 12 ماه.

جدول 1- ترکیب خمیرهای سیمانی استفاده شده برای بررسی مقاومت در برای اسید [21]

<table>
<thead>
<tr>
<th>نوع سیمان</th>
<th>وزن جزء</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFA</td>
<td>ASC</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>72/5</td>
</tr>
<tr>
<td>-</td>
<td>7/5</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

از انجایی که خمیر LFA از تخلخل بیشتری داشت و یا به عبارت دیگر نفوذی بهتری از خمیر ASC، نتایج نشان دادند که پرداخت در مقاومت در برای این خمیر به شکلی که در این مقاله نشان داده شده است.
محلول‌های آسید یک حاصله در تخلخل نشان می‌دهد که باید
ارایه شده به دلیل این میراث در

یک تحقیق دیگر نشان داده شده که در این آزمایشات، روشنایی کمی از آلیاژ مورد سرمایش قلیاً جلوگیری می‌کند و پس از تخلخل، خورده‌گی با دیگری از

 appellate جدول 2- ترکیب خیمه سیمان خرد شده و محصول‌های آسیدی [21]

<table>
<thead>
<tr>
<th>اجرا</th>
<th>محلول اسید</th>
<th>محلول اسید</th>
<th>محلول اسید</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH=5</td>
<td>pH=3</td>
<td>pH=5</td>
</tr>
<tr>
<td></td>
<td>استیکسیون</td>
<td>استیکسیون</td>
<td>استیکسیون</td>
</tr>
<tr>
<td></td>
<td>Ca/Si</td>
<td>Ca/Al</td>
<td>Ca/Si</td>
</tr>
<tr>
<td></td>
<td>Ca/Al</td>
<td>Ca/Si</td>
<td>Ca/Al</td>
</tr>
</tbody>
</table>

جدول 2: ترکیب خیمه سیمان خرد شده و محصول‌های آسیدی [21]

<table>
<thead>
<tr>
<th></th>
<th>محلول اسید</th>
<th>محلول اسید</th>
<th>محلول اسید</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH=5</td>
<td>pH=3</td>
<td>pH=5</td>
</tr>
<tr>
<td></td>
<td>استیکسیون</td>
<td>استیکسیون</td>
<td>استیکسیون</td>
</tr>
<tr>
<td></td>
<td>Ca/Si</td>
<td>Ca/Al</td>
<td>Ca/Si</td>
</tr>
<tr>
<td></td>
<td>Ca/Al</td>
<td>Ca/Si</td>
<td>Ca/Al</td>
</tr>
</tbody>
</table>

جدول 2: ترکیب خیمه سیمان خرد شده و محصول‌های آسیدی [21]

<table>
<thead>
<tr>
<th></th>
<th>محلول اسید</th>
<th>محلول اسید</th>
<th>محلول اسید</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH=5</td>
<td>pH=3</td>
<td>pH=5</td>
</tr>
<tr>
<td></td>
<td>استیکسیون</td>
<td>استیکسیون</td>
<td>استیکسیون</td>
</tr>
<tr>
<td></td>
<td>Ca/Si</td>
<td>Ca/Al</td>
<td>Ca/Si</td>
</tr>
<tr>
<td></td>
<td>Ca/Al</td>
<td>Ca/Si</td>
<td>Ca/Al</td>
</tr>
</tbody>
</table>
مقایسه شیمیایی و شیمیای شیمیابی در تغییر اقلیمی و داشتن اثرات عمیق در اروپا و آمریکا.

در تغییرات اقلیمی، شیمی و شیمیای شیمیابی به عنوان مدل‌های علمی و شیمی‌ای، در تغییرات اقلیمی نقش مهمی دارند.

1. تغییرات اقلیمی

تغییرات در اقلیم، به ویژه در سطح جهانی، به اثرات مختلفی خصوصاً در زمینه‌های حیاتی و اقتصادی منجر می‌شود.

2. شیمی و شیمیای شیمیابی

شرایط شیمیایی به عنوان یکی از جزئیات اصلی در تغییرات اقلیمی، نقش مهمی دارند.

3. تغییرات اقلیمی و شیمی و شیمیای شیمیابی

در تغییرات اقلیمی و شیمی و شیمیای شیمیابی، اثرات مختلفی وجود دارد که به ویژه در محیط زیست، اقتصاد و سیاست‌گذاری کشورهای مختلف اهمیت دارد.

در تغییرات اقلیمی، شیمی و شیمیای شیمیابی به عنوان مدل‌های علمی و شیمی‌ای، در تغییرات اقلیمی نقش مهمی دارند.

1. تغییرات اقلیمی

تغییرات در اقلیم، به ویژه در سطح جهانی، به اثرات مختلفی خصوصاً در زمینه‌های حیاتی و اقتصادی منجر می‌شود.

2. شیمی و شیمیای شیمیابی

شرایط شیمیایی به عنوان یکی از جزئیات اصلی در تغییرات اقلیمی، نقش مهمی دارند.

3. تغییرات اقلیمی و شیمی و شیمیای شیمیابی

در تغییرات اقلیمی و شیمی و شیمیای شیمیابی، اثرات مختلفی وجود دارد که به ویژه در محیط زیست، اقتصاد و سیاست‌گذاری کشورهای مختلف اهمیت دارد.

در تغییرات اقلیمی، شیمی و شیمیای شیمیابی به عنوان مدل‌های علمی و شیمی‌ای، در تغییرات اقلیمی نقش مهمی دارند.

1. تغییرات اقلیمی

تغییرات در اقلیم، به ویژه در سطح جهانی، به اثرات مختلفی خصوصاً در زمینه‌های حیاتی و اقتصادی منجر می‌شود.

2. شیمی و شیمیای شیمیابی

شرایط شیمیایی به عنوان یکی از جزئیات اصلی در تغییرات اقلیمی، نقش مهمی دارند.

3. تغییرات اقلیمی و شیمی و شیمیای شیمیابی

در تغییرات اقلیمی و شیمی و شیمیای شیمیابی، اثرات مختلفی وجود دارد که به ویژه در محیط زیست، اقتصاد و سیاست‌گذاری کشورهای مختلف اهمیت دارد.

در تغییرات اقلیمی، شیمی و شیمیای شیمیابی به عنوان مدل‌های علمی و شیمی‌ای، در تغییرات اقلیمی نقش مهمی دارند.

1. تغییرات اقلیمی

تغییرات در اقلیم، به ویژه در سطح جهانی، به اثرات مختلفی خصوصاً در زمینه‌های حیاتی و اقتصادی منجر می‌شود.

2. شیمی و شیمیای شیمیابی

شرایط شیمیایی به عنوان یکی از جزئیات اصلی در تغییرات اقلیمی، نقش مهمی دارند.

3. تغییرات اقلیمی و شیمی و شیمیای شیمیابی

در تغییرات اقلیمی و شیمی و شیمیای شیمیابی، اثرات مختلفی وجود دارد که به ویژه در محیط زیست، اقتصاد و سیاست‌گذاری کشورهای مختلف اهمیت دارد.
در ملاتهای سربارهای فعال شده با
Na$_2$SiO$_3$, nH$_2$O + NaOH و NaOH کاهش استحکام می‌شود. در نمونه‌های فعال شده با Na$_2$SiO$_3$ و نیترات نیترات، تأثیر دمای بر افزایش درمان و افزایش واکنش افزایش یافت. افزایش درمان در دمای بالاتر استحکام بیشتری از نمایه‌های پروانده شده در دمای بالایی می‌شود. اما با گذشته دمای عکس حالت دلیل این موضوع این است که در روزهای اولیه افزایش دما باعث سریعتر شدن فرآیند فعال شدن می‌شود. اما با گذشته دمای در ملاتهای بالاتر، تحلیلات تشکیل شده از واکنش بیشتر با توزیع غیر یکنواخت روي

اتر دمای پروانده بر استحکام

<table>
<thead>
<tr>
<th>جدول 3- اثر استفاده از سیمان‌های مختلف بر استحکام (AAS)</th>
<th>مشاهدات</th>
<th>فشاری (Mpa)</th>
<th>Na$_2$SiO$_3$(%)</th>
<th>SC(%)</th>
<th>AC(%)</th>
<th>PCI(%)</th>
<th>نمونه</th>
<th>سرباره</th>
</tr>
</thead>
</table>
| ۱ | ۶۹ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۱ | ۱ | ۲۸ | ۴۲ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۱۱ | ۶۹ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۲ | ۲ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۳ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۳ | ۳ | ۵۵ | ۴۲ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۴ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۴ | ۴ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۵ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۵ | ۵ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۶ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۶ | ۶ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۷ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۷ | ۷ | ۴۸ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۸ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۸ | ۸ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۹ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۹ | ۹ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۱۰ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۱۰ | ۱۰ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۱۱ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۱۱ | ۱۰ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۱۲ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۱۲ | ۱۰ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲
| ۱۳ | ۲۷ | ۱۰ | ۱۰ | ۱۰ | ۱۰ | ۸۰ | ت۱۳ | ۱۰ | ۲۷ | ۵۰۳| ۵۷۳| ۷۶ | ۷۲ | ۷۲ | ۷۲

منبع: [۱۳]
4-4-5- انقباض سیمان سرباره قیا فعال

انقباض یکی از تکنیک های مهم است و خواص ساختمانی و دوام مواد را تحت تأثیر قرار می‌دهد. به طور کلی، سیمان سرباره قیا فعال، انقباض بیشتری از (OPC) دارد. این انقباض مربوط به نمونه‌های روز اول با کمک سیلیکات رژید سدیم است. بنابراین، این انقباض در (Na2O) با آلومینیوم (Al2O3) به منظور تغییر فیزیکی این انقباض در محیط سیلیکات سدیم با شیء MS مشاهده می‌شود. این انقباض خشک شدن سیمان سرباره قیا فعال با تغییر بیشتر از (OPC) اثرات

بر پایه این اثرات، استفاده از لیگوسولفات باعث کاهش انقباض می‌شود. بنابراین، AAS به تهیه شده با 6% گچ و افزودن یک کاهنده AAS، انقباض مناسب را در حین تغییر (OPC) دارد. با افزودن 6% گچ، فاکتها AFI و AFm در اثر مقدار قابل ملاحظه‌ای تغییر می‌کند. این تغییرات جهت کاهش میزان بهبود کاهش، از چهارتا یک کارتر می‌کند. از عوامل مهم و تأثیر گذار بر انقباض می‌توان به: 1- تغییر اندازه فاتر، 2- خصوصیات زل سیلیکات کلسیم و 3- جریان از MS به عنوان پایه این انقباض توجه کنید. به همین دلیل، OPC می‌توانند به صورت کلی به عنوان پایه این انقباض توجه کنید.

جدول 4 - طبقه‌بندی اندازه حفرات در سیستم IUPAC برای خمیرهای OPC و AAS

<table>
<thead>
<tr>
<th>پرتو (nm)</th>
<th>نرخ حرارت گرمی (W/m-K)</th>
<th>نرخ حرارت گرمی (W/m-K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550-650</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>650-750</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>750-850</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

به همین دلیل، OPC می‌توانند به عنوان پایه این انقباض توجه کنید. به همین دلیل، OPC می‌توانند به عنوان پایه این انقباض توجه کنید.
نیروهای کایپلازی در سطح meniscus بیشتر شده و انقباض خشک شدن بیشتر می‌شود.[25]

اگرچه نمونه‌های AAS رطوبت کمری از نمونه‌های OPC از دست می‌دهد، اما با توجه به منحنی تجمیع شناو خطر در جایی که سطح meniscus تشکیل می‌شود، کوچکتر از خمیرهای OPC است.[25]

\[\text{PORosity (\%)} \]

شکل 4- منحنی توزیع تجمیع خمیرهای OPC و AAS

5- کاربردهای سیمان سرباره قلیا فعال

سیمان سرباره قلیا فعال کاربردهای مهمی در توسعه محصولاتی از قبیل بلکه، سیمان پیش ساخته با انرژی متفاوت، بنیای مقاوم در برابر خوردگی و حشرات، ملات‌بریزی و حبس کردن بازمانده‌های رادیواکتیو و فلزات سنگین دارد.

در این قسمت به توضیح مختصری در مورد کاربرد سیمان AAS در دفن فلزات سنگین مانند Pb, Cr, Zn, Cd و Sb است. در حضور محلول‌های قلیایی به روش مورد مطالعه شاب مقدار زیادی Al\(_2\)O\(_3\) و SiO\(_2\) تشکیل می‌دهند. با پیشرفت واکنش آب مخلوط به تدابیر خارج شده و از آلودگی ترکیب‌های SiO\(_2\)-Al\(_2\)O\(_3\)-SiO\(_3\), Pb, Cr بهم ترکیب شده و پیش‌ساختن‌های پلیمری به AAS رسیده و تشکیل می‌دهد و جهت کنی گردن کمی بار بار مثبت \(\text{Si}^{4+}\) کاتلونی‌های عناصر Si در شکبه های عینک

\(\text{Al}^{3+}\) می‌کند.[27]

کارایی سیمان در دفن فلزات سنگین به رز ساختار خمیر سیمان، مخصوصاً توزیع احتمال حفرات و تخلخل‌ها بستگی دارد. حفظ خمیرها منجر به پیشرفت بی‌کنگ در سیمان پرترنگ بوده و مهاجرت محلول‌ها در سطح شکل مشکل است.[28] علاوه بر رز ساختار، مقدار pH خمیر نیز نقش مهمی در فرآیند بی‌کارسازی بازی می‌کند. در محیط‌های با pH>12 هیدروکسید فلزات سنگین با حلال‌های بسیار کم روش می‌کند.[28] در محیط‌های AAS مقدار این pH بسته به نوع فعال ساز و فلزات در رنگ C-H/V است. برخی از محققان معتقدند که هر گونه فاز C-S-H ساختار اندکی از هیدروژن بروز و AAS زولیت‌های سدیم در خمیر AAS وجود دارد.[27] تشکیل زولیت‌های منجر به ترکیب‌های AAS از Si/C\(_{\text{Si}}\) Ca/\(\text{Si}\) که در دفن فلزات سنگین Ca/\(\text{Si}\) به \(\text{Si}^{4+}\) و آن با پایین

\(\text{Ca}^{2+}\) در دارد.[27] شرایط احیای خمیر سرباره اینه‌که شده نیز نقش بسزایی در فرآیند بی‌کارسازی دارد.[27] برای مثال احیای مقادیر از \(\text{Cr}^{3+}\) به \(\text{Cr}^{6}+\) به AAS, سنگین می‌کند.[28]

