بررسی اثر جوانه‌زاهی بر ZrO2 و P2O5 و ریزساختار شیشه سرامیک‌های دندانی لیتیم سیلیکاتی

زهره خلخالی، واحکی کاسپاری مارقوسیان، بیز افتخاری یکتا

دانشگاه علم و صنعت ایران
Khalkhali_Z@yahoo.com

چکیده: هدف از این تحقیق بررسی اثر تأثیر جوانه‌زاهی بر ZrO2 و P2O5 و متاسفیکات تیفوس گیاهی است. سرامیک‌های پاراپلاستیک با تزیینات بیسیم که دارای خاصیت انجاژین در برابر زمان جوانه‌زاهی برکنار می‌شوند. با این حال، رشد میکروسکوپی بینی بیشتر در سرامیک‌هایی که در زمان جوانه‌زاهی زمان جوانه‌زاهی در برابر زمان جوانه‌زاهی زمان جوانه‌زاهی حرکت می‌کنند. مناسب‌ترین روش و روش‌های میکروسکوپی بینی در سرامیک‌هایی که در زمان جوانه‌زاهی زمان جوانه‌زاهی حرکت می‌کنند.

کلمات کلیدی: شیشه سرامیک، تان، پروپیل سرامیک، متاسفیکات تیفوس، زمان جوانه‌زاهی

1- مقدمه

امروزه سرامیک‌ها بدلیل زیبایی و عدم ایجاد حساسیت جایگزین ترمیم‌های دندانی بر یافتن شدند. شیشه سرامیک‌های پاراپلاستیک به‌طور زیادی در رقابت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند. این مدل‌ها سرامیک‌های پاراپلاستیک به‌طور زیادی در رقابت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند. این مدل‌ها شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

EP 500, Ivoclar vivadent) مخصوصی(برای تهیه شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند. این مدل‌ها شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌شوند.

شیشه‌های سرامیک‌های در تفاوت با سرامیک‌های الکتریکی و الکتریکی استفاده می‌sh
مواد اولیه مصرفی سیلیس همین اسید شویی شده با اسید هیدروکلریک، آلومینیم ام از ۲۰٪ با اندام خاتمی افزایش ۷۰٪ میکرومتر و خلوص بالاتر از ۹۹٪ کربنات لیمنیت (Merck No.1.05671), نیترات پاتسیم (Merck No.1.05651) و پتاسیم فسفر (Merck No.1.00540) و اسید بوریک (Merck No.1.00162) پذیرش و به عنوان های آلومینیم، Gb و Gg یا استفاده از بتهای آلومینیم، Gb و Gg یا در (Merck No.209) بود. از ترکیبات، Gb و Gg یا با استفاده از بیشتر آسیبپذیری آلومینیم ۲۰۰۰ دقیقه (d)艹 دیمای هوا ۱۲۵۰ درجه تیپ شد. کوره مورد استفاده براورد تهیه می‌باشد. در Polymer Laboratories مدیر بررسی ترکیب Gf ۶۰۰ درجه اغلب آسیب و مکانیک الک شد. آزمایش‌های برآور نزدیک‌تر با دستگاه Jeol-JDX ۸۰۳۰ (تی‌پر ۳۵ میلی‌متر تخت فشار ۴۵ مکاوالیکال از آن تهیه شد. با توجه به آن در کتاب‌های پژوهشی ۲-۱۰۰۰۰ درجه تیپ شد. شکل ۱- منحني DTA مربوط به فریت شیشه ای برای هر سه شیشه Gb، Gg و Gb، Gg، Gb، Gg. سرعت افزایش دما بر اساس نتایج حاصل از الگوی برآورد برای اکس (شکل ۲) یک اصلی بیلور برای برای (۲۱۰۰۰۰۰۰۰۰۰۰۰ درجه تیپ Gb در ۶۵۵ درجه تیپ (Li۲Si۲O۵ (d) و برای دوم بیلور در نمونه Gb (Li۵Si۵O۱۰ (d) مربوط به دی سیلیکات اکس است. ۴۱ (Li۵Si۵O۱۰ (d) است.

۳- نتایج و بحث

۳-۱- تعیین دماهای بیلور با استفاده از آزمایشات XRD و DTA

شکل ۱- منحني DTA مربوط به فریت شیشه ای برای هر سه شیشه Gb، Gg و Gb، Gg، Gb، Gg. سرعت افزایش دما بر اساس نتایج حاصل از الگوی برآورد برای اکس (شکل ۲) یک اصلی بیلور برای برای (۲۱۰۰۰۰۰۰۰۰۰۰۰ درجه تیپ Gb در ۶۵۵ درجه تیپ (Li۲Si۲O۵ (d) و برای دوم بیلور در نمونه Gb (Li۵Si۵O۱۰ (d) مربوط به دی سیلیکات اکس است.

۱ MR70
۲ DTA
۳ XRD
۴ SEM

[Downloaded from jicers.ir on 2022-01-15]
با مقایسه یک گرم‌زای اول و دوم در منحنی DTA ترکیب G₃، می‌توان نتیجه گرفت که مکانیزم تبلور مناسیلیت‌ها (یک اول) به صورت حجمی و مکانیزم تبلور در سیلیکات لیتیم (یک دوم)، به صورت سطحی بوده است. بنابراین سطح ذرات مکانیزم ترکیب‌برداری و کاهش نسبت بین حالت‌های DTA در مناسبیلیت‌ها به دلیل ترکیب‌برداری دیگر هم تأثیر می‌گذارد. به این ترتیب که تبلور خواهد بود. این مطلب با توجه به منحنی‌های DTA و ترکیب دیگر هم تأثیر می‌گذارد. به این ترتیب که تبلور فاز دی سیلیکات لیتیم در دو ترکیب G₃ و G₄ هم در حدود دمای 875°C رخ داده است (شکل 2). با این حال پیک گرم‌زای تبلور این فاز در منحنی DTA این دو ترکیب دیده نمی‌شود (شکل 1).

شکل 2- نتایج آزمایش XRD برای سه ترکیب در پیک‌های DTA

با توجه به شکل 2، پیک‌هایی مربوط به فاز Li₄SiO₄، ترکیب G₃ یکی می‌بود. به نظر می‌رسد که حضور این فاز باعث شده که جوانه زنی و تبلور مناسبیلیت‌ها لیتیم بر روی بلوارهای فسفات لیتیم (به صورت هتروژن) انجام گیرد. به همین علت شدت پیک‌های مناسبیلیت‌های لیتیم در دمای 875°C بیشتر است.

در شکل 1 به دو یک گرم‌زای تبلور در منحنی DTA ترکیب G₃، هیچ پیک گرام‌گرایی حاکی از حل شدن فاز مناسبیلیت لیتیم، دیده نمی‌شود و چنین به نظر می‌رسد که می‌تواند از مناسبیلیت‌های لیتیم است. در طرفی در شکل 2، پیک‌هایی مربوط به مناسبیلیت‌های لیتیم در دمای 875°C، ترکیب G₃ و G₄ به شدت می‌گذارند. با این فاز، مناسبیلیت‌های لیتیم در ترکیب مربوط به مناسبیلیت‌های لیتیم تبلور تکثیف داشته و به گونه‌ای مصرف شده است. پس می‌توان امکانی را که می‌تواند از مناسبیلیت لیتیم می‌باشد.

می‌توان چنین گفت: در هنگام بروز این انتظار به صورت سطحی از سطح ذرات پودر پرس شده می‌تواند. در صورت کمی از این فاز، به صورت اینکسی بروز مناسبیلیت لیتیم جوانه زنی کرده و کم کم با دیفروشین اجزای تشکیل‌دهنده آن به پلاسمای محیط می‌گردد. به همین دلیل مناسبیت لیتیم رشد می‌کند.

پیش مانده بودن فاز مناسبیلیت لیتیم برای دی سیلیکات L9L در اکثر منابع نیز تایید می‌گردد [3-8].
3-2 | بررسی تبلور نمونه‌های زینت‌شده پس از حرارت دهی مجدد با استفاده از XRD

شکل 3-1 نتایج مربوط به سه ترکیب

\[G_{BZ} \text{ و } G_{B} \text{ و } G_{P} \]

زینت‌شده پس از حرارت دهی مجدد در دمای 950 \(^{\circ}\)C نشان می‌دهد تا پیوسته به این شکل، نتایج در ترکیب

\[G_{BZ} \text{ و } G_{B} \text{ و } G_{P} \]

پس از حرارت دهی مجدد فاز ماده سیلیکات لیتیم لیتیم قابل مشاهده است. در دو ترکیب

\[G_{BZ} \text{ و } G_{B} \]

پس از حرارت دهی مجدد تی تیاز ماده سیلیکات لیتیم مشاهده می‌شود و فاز دی سیلیکات لیتیم در زمینه حل شده است. در نتیجه غنی‌شدن زمینه شیشه‌ای از

\[Li^+ \text{ و } Si^{4+} \]

بزرگ‌ترین ماده مانندی ترکیب ماده سیلیکات لیتیم در دمای 650 \(^{\circ}\)C در حین سردر شدن نمونه‌ها در

کروه شده است.

با توجه به این که ترکیب و نوع فاز بلوری باقی مانده در شیشه سرامیک حرارت دهی مجدد شده تعیین کننده نحوه کارآی آن به عنوان تررمیناتور است، پس می‌توان نتیجه گرفت که از میان سه ترکیب

\[G_{P} \text{ و } G_{B} \text{ و } G_{BZ} \]

پس از حرارت دهی مجدد فاز دی سیلیکات لیتیم وجود دارد این ترکیب برای کاربرد مذکور مناسب‌تر می‌باشد.

\[d: Li_{2}SiO_{3} \text{ (950}^{\circ}\text{C/15min)} \]

\[m: Li_{2}SiO_{3} \]

\[2\theta \]

\[\text{دو}-3 | مطالعات SEM}

شکل 3-2 ترازور ترکیب‌های

\[G_{P} \text{ و } G_{BZ} \text{ و } G_{B} \text{ را پس از زینت‌شده در 825\text{°C/1h}} \]

پس از حرارت دهی مجدد در 950 \(^{\circ}\)C می‌دهد.

ماند ماده

\[G_{BZ} \text{ و } G_{B} \]

پس از زینت‌شده ریزساختار مشاهده نشده. در برخی ماده‌گذاری شکل، نشان دهنده که

\[Li_{2}O-SiO_{2} \text{ در شیشه سیلیکات را پلیمر‌بردار می‌کند. و جدی‌ترین قابل از تب unter

\[\text{ایجاد می‌کند}. \]

\[100 \text{، لی در بروز حادثه در محدوده دما، که این سیستم دچار جدایی ظاهر می‌شود

\[\text{شکل} \text{ و } G_{BZ} \text{ در بهزیستی} \text{ و } 111 \text{یک اثری از جدایی فازی در } 650 \text{، } 400 \text{، } 300 \text{ طبقه‌گروهی} \text{ اثری از } XRD \text{

\[\text{بوده، می‌توان این دو ترکیب تقریباً یکسان بوده، می‌توان تنها جوانه‌ای نیازی دارد.} \]

\[Li_{2}O-SiO_{2} \text{ در } XRD \text{ لی ترکیب فیکسه دی سیلیکات لیتیم در نتایج } \text{ XRD }

\[\text{در مدار } \text{ XRD } \text{ در } 650 \text{، } 400 \text{، } 300 \text{ طبقه‌گروهی} \text{ اثری از } XRD \text{

\[\text{که این سیستم دچار جدایی ظاهر می‌شود.} \]

\[Li_{2}O-SiO_{2} \text{ در } XRD \text{ لی ترکیب فیکسه دی سیلیکات لیتیم در نتایج } \text{ XRD }

\[\text{در مدار } \text{ XRD } \text{ در } 650 \text{، } 400 \text{، } 300 \text{ طبقه‌گروهی} \text{ اثری از } XRD \text{

\[\text{که این سیستم دچار جدایی ظاهر می‌شود.} \]

\[\text{در مدار } \text{ XRD } \text{ در } 650 \text{، } 400 \text{، } 300 \text{ طبقه‌گروهی} \text{ اثری از } XRD \text{

\[\text{که این سیستم دچار جدایی ظاهر می‌شود.} \]
شکل ۴ - مقایسه ریزساختار سه ترکیب مورد مطالعه پس از زیستن در ۸۲۵ °C/۳۲/۴۳ و پس از حاره دهی مجدد در ۹۵۰ °C/۱۵min

ریزساختار مطلوبی که در ترکیب G۸ و G۸ پس از زیستن وجود داشت، پس از حاره دهی مجدد از بین رفته و تمام دی سیلیکات لیتیم حل شده است و در جای سرد شدن دوباره پلورهای متابولیسی سیلیکات لیتیم منتشر شده‌اند (شکل ۴). ولی در ترکیب G۸، که در دمای ۸۸۰°C زیستن شده است، پس از حاره دهی مجدد، تنها فاز دی سیلیکات لیتیم حل شده، بلکه پلورهای آن تا ۲۳۰۰ برای رشد یافته‌اند. باید بپذیریم تنها در ترکیب G۸، پس از حاره دهی مجدد، ریزساختار در هم قفل شده‌اند و پلورهای دی سیلیکات لیتیم پایدار مانند G۸، در ترکیب G۸، دانسته جویانه زنی متناسیلیکات لیتیم نسبت به دو ترکیب دیگر بیشتر و بیشتر آن حجمی تر شده است. از آن جایی که متاسیلیکات لیتیم پیش ماده‌ای دی سیلیکات لیتیم است، تبلور فاز آخر نیز به علت میزان زنی متاسیلیکات بیشتر، در ترکیب G۸، بیش از دو ترکیب دیگر است.

۴- نتیجه‌گیری

- با توجه به نتایج آزمون DTA به نظر می‌رسد که مکانیزم غالب در تبلور متاسیلیکات لیتیم، از نوع حجمی، و در دی سیلیکات لیتیم، از نوع مسطح است.
- تنها در ترکیب G۸، پس از حاره دهی مجدد، ریزساختار در هم قفل شده‌اند و پلورهای دی سیلیکات لیتیم پایدار مانند G۸، با تشکل فاز Li۳PO۴ در محدوده دمایی ۴۵۰-۵۳۰°C مکانهای جویانه زنی برای فاز متناوبی می‌کند.